Since Internet Protocol version 6 is a new technology, insecure network configurations are inevitable. The researchers contributed a lot to spreading knowledge about IPv6 vulnerabilities and how to address them over the past two decades. In this study, a systematic literature review is conducted to analyze research progress in IPv6 security field following the Preferred Reporting Items for the Systematics Review and Meta-Analysis (PRISMA) method. A total of 427 studies have been reviewed from two databases, IEEE and Scopus. To fulfil the review goal, several key data elements were extracted from each study and two kinds of analysis were administered: descriptive analysis and literature classification. The results show positive signs of the research contributions in the field, and generally, they could be considered as a reference to explore the research of in the past two decades in IPv6 security field and to draw the future directions. For example, the percentage of publishing increased from 147 per decade from 2000-2010 to 330 per decade from 2011 to 2020 which means that the percentage increase was 124%. The number of citations is another key finding that reflects the great global interest in research devoted to IPv6 security issues, as it was 409 citations in the decade from 2000-2010, then increased to 1643 citations during the decade from 2011 to 2020, that is, the percentage increase was 302%.
Background: Bacteriocin is a peptidic toxin has many advantages to bacteria in their ecological niche and has strong antibacterial activity. Objective: The aim of this study was to evaluation of bacteriocin using Streptococcus sanguinis isolated from human dental caries.
Subjects and Methods: Thirty five streptococcus isolates were diagnosed and tested for their production of bacteriocin, and then the optimal conditions for production of bacteriocin were determined. After that, the purification of bacteriocin was made partially by ammonium sulfate at 95% saturation levels, followed by and gel filtration chromatography
... Show MoreForty lower premolars with single root canals prepared with ProtaperNext files to size 25, and obturated with GP/sealer using lateral compaction. Teeth divided randomly into four groups (group n=10). Protaper universal retreatment kit (PUR), D-Race desobturation files (DRD), R-Endo retreatment kit (RE) and Hedstrom (H) files (control) were used to remove GP/sealer in each group. Removal effectiveness assessed by measuring the GP /sealer remnants in the roots after sectioning them into two halves. Stereomicroscope with a digital camera used to capture digital images. Images processed by ImageJ software to measure the percentage of GP/sealer remnants surface area in total, coronal, middle and apical areas of the canal. In the coronal area,
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreIn this research, a simple experiment in the field of agriculture was studied, in terms of the effect of out-of-control noise as a result of several reasons, including the effect of environmental conditions on the observations of agricultural experiments, through the use of Discrete Wavelet transformation, specifically (The Coiflets transform of wavelength 1 to 2 and the Daubechies transform of wavelength 2 To 3) based on two levels of transform (J-4) and (J-5), and applying the hard threshold rules, soft and non-negative, and comparing the wavelet transformation methods using real data for an experiment with a size of 26 observations. The application was carried out through a program in the language of MATLAB. The researcher concluded that
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreThis article investigates the decline of language loyalty in the age of audiovisual nearness. It is a socio-linguistic review of previous literature related to language disloyalty. It reviews the current theoretical efforts on the impact of audiovisual nearness created by social media and language loyalty. The descriptive design is used. The argument behind this review is that the audiovisual nearness provided by social media negatively affects language loyalty. This article concludes that the current theoretical efforts have paid much attention to the relationship between the audiovisual nearness and language loyalty. Such efforts have highlighted the fact that the social media platforms have provided unprecedented nearness that provoke in
... Show More