The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of fractional differential equations.
This paper deals with a method called Statistical Energy Analysis that can be applied to the mechanical and acoustical systems like buildings, bridges and aircrafts …etc. S.E.A as a tool can be applied to the resonant systems in the circumstances of high frequency or/and complex structure». The parameters of S.E.A such as coupling loss factor, internal loss factor, modal density and input power are clarified in this work ; coupled plate sub-systems and explanations are presented for these parameters. The developed system is assumed to be resonant, conservative, linear and there is an equipartition of energy between all the resonant modes within a given frequency band in a given sub-system. The aim of th
... Show MoreIn this paper, we conduct some qualitative analysis that involves the global asymptotic stability (GAS) of the Neutral Differential Equation (NDE) with variable delay, by using Banach contraction mapping theorem, to give some necessary conditions to achieve the GAS of the zero solution.
This paper deals with an analytical study of the flow of an incompressible generalized Burgers’ fluid (GBF) in an annular pipe. We discussed in this problem the flow induced by an impulsive pressure gradient and compare the results with flow due to a constant pressure gradient. Analytic solutions for velocity is earned by using discrete Laplace transform (DLT) of the sequential fractional derivatives (FD) and finite Hankel transform (FHT). The influences of different parameters are analyzed on a velocity distribution characteristics and a comparison between two cases is also presented, and discussed in details. Eventually, the figures are plotted to exhibit these effects.
In this research , we study the inverse Gompertz distribution (IG) and estimate the survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes
The aim of this work was to develop and validate a rapid and low cost method for estimation of ibuprofen in pharmaceutical suspensions using Reverse-Phase High Performance Liquid Chromatography. The proposed method was conducted and validated according to International Conference on Harmonization (ICH) requirements. The chromatographic parameters were as follows: column of octyldecylsilyl C18 with dimensions (150 × 4.6) mm, mobile phase composed of acetonitrile with phosphoric acid with a ratio of 50 to 50 each using isocratic mode, flow rate of 1.5 mL/min and injection volume of 5 μL. The detection was carried out using UV detector at 220 nm. The method was validated and showed short retention time for ibuprofen peak at 7.651 min, wit
... Show MoreTransformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy pe
... Show MoreIron oxide(Fe3O4) nanoparticles of different sizes and shapes were synthesized by solve-hydrothermal reaction assisted by microwave irradiation using ferrous ammonium sulfate as a metal precursor, oleic acid as dispersing agent, ethanol as reducing agent and NaOH as precipitating agent at pH=12. The synthesized Fe3O4 nano particles were characterized by X-ray diffraction (XRD), FTIR and thermal analysis TG-DTG. Sizes and shapes of Fe3O4 nanoparticles were characterized by Scanning Electron Microscopy (SEM), and atomic force microscopy (AFM).
Abstract:
The great importance that distinguish these factorial experiments made them subject a desirable for use and application in many fields, particularly in the field of agriculture, which is considered the broad area for experimental designs applications.
And the second case for the factorial experiment, which faces researchers have great difficulty in dealing with the case unbalance we mean that frequencies treatments factorial are not equal meaning (that is allocated a number unequal of blocks or units experimental per tre
... Show More