Preferred Language
Articles
/
bsj-7310
Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator
...Show More Authors

The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of fractional differential equations.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Sep 10 2022
Journal Name
Pakistan Journal Of Statistics And Operation Research
Continuous wavelet estimation for multivariate fractional Brownian motion
...Show More Authors

 In this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.

View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Sep 10 2022
Journal Name
Pakistan Journal Of Statistics And Operation Research
Continuous wavelet estimation for multivariate fractional Brownian motion
...Show More Authors

 In this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.

View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Compare Prediction by Autoregressive Integrated Moving Average Model from first order with Exponential Weighted Moving Average
...Show More Authors

The prediction process of time series for some time-related phenomena, in particular, the autoregressive integrated moving average(ARIMA) models is one of the important topics in the theory of time series analysis in the applied statistics. Perhaps its importance lies in the basic stages in analyzing of the structure or modeling and the conditions that must be provided in the stochastic process. This paper deals with two methods of predicting the first was a special case of autoregressive integrated moving average which is ARIMA (0,1,1) if the value of the parameter equal to zero, then it is called Random Walk model, the second was the exponential weighted moving average (EWMA). It was implemented in the data of the monthly traff

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Convergence Analysis for the Homotopy Perturbation Method for a Linear System of Mixed Volterra-Fredholm Integral Equations
...Show More Authors

           In this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Oct 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
بناء إنموذج رياضي لتعظيم عائد الشركة الإنتاجية بإستعمال البرمجة الكسرية الخطية الصحيحة – مع تطبيق عملي
...Show More Authors

These search summaries in building a mathematical model to the issue of Integer linear Fractional programming and finding the best solution of Integer linear Fractional programming (I.L.F.P) that maximize the productivity of the company,s revenue by using the largest possible number of production units and maximizing denominator objective which represents,s proportion of profits to the costs, thus maximizing total profit of the company at the lowest cost through using Dinkelbach algorithm and the complementary method on the Light industries company data for 2013 and comparing results with Goal programming methods results.

It is clear that the final results of resolution and Dinkelbac

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Oscillations of First Order Neutral Differential Equations with Positive and Negative Coefficients
...Show More Authors

Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.

View Publication Preview PDF
Crossref
Publication Date
Fri Aug 01 2014
Journal Name
Int. J. Mod. Eng. Res
Exact solutions for MHD flow of a viscoelastic fluid with the fractional Burgers’ model in an annular pipe
...Show More Authors

This paper presents an analytical study for the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid in an annular pipe. Closed from solutions for velocity is obtained by using finite Hankel transform and discrete Laplace transform of the sequential fractional derivatives. Finally, the figures are plotted to show the effects of different parameters on the velocity profile.

View Publication
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Discrete wavelet based estimator for the Hurst parameter of multivariate fractional Brownian motion
...Show More Authors
Abstract<p>In this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.</p>
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jan 07 2022
Journal Name
Iraqi Journal Of Laser
Influence of Fractional CO2 Laser Irradiation on Temperature Elevation and Bonding Strength of Resin Cement to the Zirconia Ceramic
...Show More Authors

Abstract: Objectives: To investigate the effect of temperature elevation on the bonding strength of resin cement to the zirconia ceramic using fractional CO2 laser. Background: Fractional CO2 laser is an effective surface treatment of zirconia ceramic, as it increases the bonding strength of zirconia to resin cement. Methods: Thirty sintered zirconia discs (10 mm diameter, 2 mm thickness) were prepared and divided to three groups (N=10) and five diffident pulse durations were used in each group (0.1, 0.5, 1, 5 and 10 ms). Group A was treated with 10 W power setting, group B with 20 W and group C with 30 W. During laser irradiation, temperature elevation measurement was recorded for each specimen. Luting cement was bonded to the treated z

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 01 2014
Journal Name
Iosr Journal Of Mathematics
Flow through an Oscillating Rectangular Duct for Generalized Oldroyd-B Fluid with Fractional Derivatives
...Show More Authors

The analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations

View Publication