The aim of this research is to employ starch as a stabilizing and reducing agent in the production of CdS nanoparticles with less environmental risk, easy scaling, stability, economical feasibility, and suitability for large-scale production. Nanoparticles of CdS have been successfully produced by employing starch as a reducing agent in a simple green synthesis technique and then doped with Sn in certain proportions (1%, 2%, 3%, 4%, and 5%).According to the XRD data, the samples were crystallized in a hexagonal pattern, because the average crystal size of pure CdS is 5.6nm and fluctuates in response to the changes in doping concentration 1, 2, 3, 4, 5 %wt Sn, to become 4.8, 3.9, 11.5, 13.1, 9.3 nm respectively. An increase in crystalline size has been noticed in the doped CdS than in the pure CdS. The particle size is within the range of 24-103 nm, according to SEM data from pure CdS and of the doped with Sn particles. The band gap's energy values, according to UV-Vis reflection spectroscopy were 3.06,2.61 ,2.63, 2.63, 2.66,2.69 eV for pure and doped with Sn 1%, 2%, 3%, 4%, 5% respectively. The grain size and roughness rate of pure CdS materials and doped with Sn are shown in AFM results 2.16,2.39,10.07,11.33, 12.47,18.56 nm and average diameter is 30.15, 11.71, 66.06, 48.27,82.011, 80.35 nm for pure and doped with tin 1%, 2%, 3%, 4%, 5% respectively.
The study concern with the preparation of three type of mixtures; which are prepared from different percentage of polyvenil Butyral, Di-n-butyl phathalate and paraffin wax pastillated. The solvent used is Xylolzul analyses. After washing, Drying and milling the kaolin Dukhla, as a matrix in this study, and by using sieving Tech. The range of particle size used is less than and less than as a mesh batch. The added percentage from prepared mixture were 5% and 10% to 95% and 90% of the matrix respectively. Then disk samples were prepared by using a compaction pressure with heating. After cooling and drying the samples were undergo heat treatment in the range of (1250 – 1350) oC. The measurement of shrinkage and Dielectric properties sho
... Show MorePhysical measurements are one of the basic factors that affect the performance of the goalkeeper, especially when confronting fixed kicks that require special skills such as the reaction and accuracy in concentration, and with technological development artificial intelligence has become an effective tool for analyzing mathematical data that is difficult to discover in traditional methods The study aims to employ techniques Artificial intelligence to study the relationship between physical measurements and the accuracy of confronting the fixed kicks of goalkeepers in football. This study will contribute to providing a deeper understanding of physical factors that affect the performance of goalkeepers, in addition to designing dedicat
... Show MoreIn this research study Hardness (shore D), Water absorption,
Flexural, Impact Test, and Fracture Toughness of polymer nano
composites. The polymer nano composites based on unsaturated
polyester resin reinforced with Kevlar fibers (K.F). The samples are
attended by hand lay – up method according to (Rule mixture) for
various volume fractions of unsaturated polyester resin, fiber and
carbon nanotube. The polyester resin was matrix strengthened with
3% volume fraction from Kevlar fiber and (0.5%, 1%, 1.5%, 2%)
volume fractions of carbon nanotube. The water absorption, hardness
(shore D), flexural test, impact test and toughness fracture properties
were studied. Results showed that the water absorption increas
New complexes of the [M(Ura)(Phen)(OH2)Cl2]Cl.2H2O type, where (Ura) uracil ; (Phen) 1,10-phenanthroline hydrate; M (Cr+3 , Fe+3 and La+3) were synthesized from mix ligand and characterized . These complexes have been characterized by the elemental micro analysis, spectral (FT-IR., UV-Vis, 1HNMR, 13CNMR and Mass) and magnetic susceptibility as well the molar conductive mensuration. Cr+3, Fe+3 and La+3- complexes of six–coordinated were proposed for the insulated for three metal(III) complexes for molecular formulas following into uracil property and 1,10-phenanthroline hydrate present . The proposed molecular structure for all metal (III) complexes is octahedral geometries .The biological activity was tested of metal(III) salts, ligands
... Show More
Interested in current research examining the concept of synthesis in contemporary ceramics, he studied the synthesis as a concept to achieve technical and aesthetic innovation.
The study comes in four axes. The first axis to ensure the general framework for research, containing the problem, which is to ask the following: Is the concept of synthesis role in enriching the contemporary ceramic done? The importance of research and study are needed in addition provide knowledge in the field of contemporary art
In this work magnetite/geopolymer composite (MGP) were synthesized using a chemical co-precipitation technique. The synthesized materials were characterized using several techniques such as: “X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample-magnetometer (VSM), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET) and Barrentt-Joyner-Halenda (BJH)” to determine the structure and morphology of the obtained material. The analysis indicated that metal oxide predominantly appeared at the shape of the spinel structure of magnetite, and that the presence of nano-magnetite had a substantial impact on the surface area and pore st
... Show MoreIn vivo study revealed that ZnO nanoparticles treatment of Streptococcus SPP contaminated injured skin showed good prognosis and good healing process include complete regeneration of the epithelial cells of the epidermis and increase of cellulartiy of the dermal content compared with untreated group. In conclusion, treatment of S. pyogenes infected skin with Zinc oxide nanoparticles concentration (2 mg/ml) limit the skin damage and localized the lesion to the incision site with good healing process
The work concerned with studying the effect of (SiO2) addition as a
filler on the adhesive properties of (PVA). Samples were prepared as
sheets by using casting method. The mechanical properties showed
that increase in tensile strength from (34MPa) to (68MPa) when
(SiO2) added to (PVA). The adhesive strength showed that joint
properties depend upon specific adhesive characteristic of material
(PVA) and (SiO2\PVA)composites at different concentrations (1.5%,
2.5%, 3.5%, 4.5wt%), the cohesive strength of the adhesive material,
the joint design, and adherent type (Sponge Rubber(SR), Natural
leather (NL), Vulcanized Rubber(VR), and Cartoon). The results
proved the tensile strength increased with (SiO2) ratio, so