Let/. It :0 ---0 G be any two self maps of a compact connected oriented Lie group G. In this paper, for each positive integer k , we associate an integer with fk,hi . We relate this number with Lefschetz coincidence number. We deduce that for any two differentiable maps f, there exists a positive integer k such that k 5.2+1 , and there is a point x C G such that ft (x) = (x) , where A is the rank of G . Introduction Let G be an n-dimensional com -pact connected Lie group with multip-lication p ( .e 44:0 xG--+G such that p ( x , y) = x.y ) and unit e . Let [G, G] be the set of homotopy classes of maps G G . Given two maps f , f G ---• Jollowing [3], we write f. f 'to denote the map G-.Gdefined by 01.11® =A/WO= fiat® ,sea Given a point g EC and a differ-entiable map F: G G , write GA to denote the tangent space of G at g [4,p.10] , and denote by d x F the linear map rig F :Tx0 T, (x)G induced by F , it is called the differential of Fat g [4,p.22]. Let LA, Rx :0 G be respec-tively the left translation Lx(i)=4..(g,e) , and the right translation Rx(1)./..(gcg). Then there is a natural homomorphism Ad ,the adjoin representation, from G to GL(G•), (the group of nonsingular linear transformations of Qdefined as follows:- Ad(g)= deRe, od,Lx. Note that d xRc, ad.; =d(4,( Lx(e)))0 de; =d.(4, 04)=4(40 Re) = d(4(4, (e)))0 (44, =d ar, o (44, . Since G is connected , the image of Ad belongs to the connected component of G(G)containing the identity,i.e. for each g E 0, detAd(g) > 0 . By Exercise Al • Dr.-Prof.-Department of Mathematics- College of Science- University of Baghdad. •• Dr.-Department of Mathematics- College of Science for Woman- University of Baghdad.
Recently, complementary perfect corona domination in graphs was introduced. A dominating set S of a graph G is said to be a complementary perfect corona dominating set (CPCD – set) if each vertex in is either a pendent vertex or a support vertex and has a perfect matching. The minimum cardinality of a complementary perfect corona dominating set is called the complementary perfect corona domination number and is denoted by . In this paper, our parameter hasbeen discussed for power graphs of path and cycle.
In this paper we study the effect of the number of training samples for Artificial neural networks ( ANN ) which is necessary for training process of feed forward neural network .Also we design 5 Ann's and train 41 Ann's which illustrate how good the training samples that represent the actual function for Ann's.
The main object of this paper is to study the representations of monomial groups and characters technique for representations of monomial groups. We refer to monomial groups by M-groups. Moreover we investigate the relation of monomial groups and solvable groups. Many applications have been given the symbol G e.g. group of order 297 is an M-group and solvable. For any group G, the factor group G/G? (G? is the derived subgroup of G) is an M-group in particular if G = Sn, SL(4,R).
Let G be a finite group, the result is the involution graph of G, which is an undirected simple graph denoted by the group G as the vertex set and x, y ∈ G adjacent if xy and (xy)2 = 1. In this article, we investigate certain properties of G, the Leech lattice groups HS and McL. The study involves calculating the diameter, the radius, and the girth of ΓGRI.
The buildup factor of cylindrical samples (shields) for Brass, Copper & lead (Brass, Cu, Pb (was studied, where buildup factor were calculated with thickness between (0-12) m.f.p. for Co60 and Cs137sources with activities (30) & (41) MBq respectively , using scintillation detector NaI(T?) with (3"×3")volume .The results shows increases of buildup factor for low atomic number(Z) samples where the energy of radiation source was constant, also shows increases of buildup factor with decreases the energy of radiation source. An empirical equation was obtained using Matlab7 program this equation have agreements with most obtained data for 96%.
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
in this article, we present a definition of k-generalized map independent of non-expansive map and give infinite families of non-expansive and k-generalized maps new iterative algorithms. Such algorithms are also studied in the Hilbert spaces as the potential to exist for asymptotic common fixed point.
The problem of finding the cyclic decomposition (c.d.) for the groups ), where prime upper than 9 is determined in this work. Also, we compute the Artin characters (A.ch.) and Artin indicator (A.ind.) for the same groups, we obtain that after computing the conjugacy classes, cyclic subgroups, the ordinary character table (o.ch.ta.) and the rational valued character table for each group.