Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and overlapping kitchen utensils from internet were used as base benchmark objects. The evaluation and training/validation sets are set at 20% and 80% respectively. This project evaluated the performance of these techniques and analyzed their strengths and speeds based on accuracy, precision and F1 score. The analysis results in this project concluded that the YOLOv5 produces accurate bounding boxes whereas the Faster R-CNN detects more objects. In an identical testing environment, YOLOv5 shows the better performance than Faster R-CNN algorithm. After running in the same environment, this project gained the accuracy of 0.8912(89.12%) for YOLOv5 and 0.8392 (83.92%) for Faster R-CNN, while the loss value was 0.1852 for YOLOv5 and 0.2166 for Faster R-CNN. The comparison of these two methods is most current and never been applied in overlapping objects, especially kitchen utensils.
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThe flexibility of interaction between the movement of macroeconomic variables that affect and are affected by the balance of payments, especially the movement of the current account, implies a perception of the maturity of economic development and what the theory assumes from the launch of a wide range of economic movement that varies in the degree of its influence according to the level of economic development and the vitality of the internal/external overlap relations through the assumed response to the movement of the macroeconomic variables. On this basis, it is possible to estimate the soundness and rationality of the economic decision taken that takes into account the required reciprocal repercussions between the current a
... Show MoreDiabetes mellitus caused by insulin resistance is prompted by obesity. Neuropeptide Nesfatin-1 was identified in several organs, including the central nervous system and pancreatic islet cells. Nesfatin-1 peptide appears to be involved in hypothalamic circuits that energy homeostasis and control food intake. Adiponectin is a plasma collagen-like protein produced by adipocytes that have been linked to the development of insulin resistance (IR), diabetes mellitus type 2 (DMT2), and cardiovascular disease (CVD). Resistin was first identified as an adipose tissue–specific hormone that was linked to obesity and diabetes. The aim of this study was to estimate the relationship between human serum nesfatin-1, adiponect
... Show MoreIn this study Microwave and conventional methods have been used to extract and estimate pectin and its degree of esterification from dried grapefruit and orange peels. Acidified solution water with nitric acid in pH (1.5) was used. In conventional method, different temperature degrees for extraction pectin from grape fruit and orange(85 ,90 , 95 and 100?C) for 1 h were used The results showed grapefruit peels contained 12.82, 17.05, 18.47, 15.89% respectively, while the corresponding values were 5.96, 6.74, 7.41 and 8.00 %, respectively in orange peels. In microwave method, times were 90, 100, 110 and 120 seconds. Grapefruit peels contain 13.86, 16.57, 18.69, and 17.87%, respectively, while the corresponding values were of 6.53, 6.68, 7.2
... Show MoreBiodiesel production from microalgae depends on the biomass and lipid production. Both biomass and lipid accumulation is controlled by several factors. The effect of various culture media (BG11, BBM, and Urea), nutrients stress [nitrogen (N), phosphorous (P), magnesium (Mg) and carbonate (CO3)] and gamma (γ) radiation on the growth and lipid accumulation of Dictyochloropsis splendida were investigated. The highest biomass and lipid yield of D. splendida were achieved on BG11 medium. Cultivation of D. splendida in a medium containing 3000 mg L−1 N, or 160 mg L−1 P, or 113 mg L−1 Mg, or 20 mg L-1 CO3, led to enhanced growth rate. While u
... Show MoreSemi-empirical methods were applied for calculating the vibration frequencies and IR absorption intensities for normal coordinates of the {mono (C56H28), di (C84H28), tri (C112H28) and tetra (C140H28)} -rings layer for (7,7) armchair single wall carbon nanotube at their equilibrium geometries which were all found to have D7d symmetry point group.
Assignment of the modes of vibration (3N-6) was done depending on the pictures of their modes by applying (Gaussian 03) program. Comparison of the vibration frequencies of (mono, di, tri and tetra) rings layer which are active in IR, and inactive in Ramman spectra. For C-H stretching vibrat
... Show More