Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and overlapping kitchen utensils from internet were used as base benchmark objects. The evaluation and training/validation sets are set at 20% and 80% respectively. This project evaluated the performance of these techniques and analyzed their strengths and speeds based on accuracy, precision and F1 score. The analysis results in this project concluded that the YOLOv5 produces accurate bounding boxes whereas the Faster R-CNN detects more objects. In an identical testing environment, YOLOv5 shows the better performance than Faster R-CNN algorithm. After running in the same environment, this project gained the accuracy of 0.8912(89.12%) for YOLOv5 and 0.8392 (83.92%) for Faster R-CNN, while the loss value was 0.1852 for YOLOv5 and 0.2166 for Faster R-CNN. The comparison of these two methods is most current and never been applied in overlapping objects, especially kitchen utensils.
The aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.
This research aims to study the important of the effect of analysis of covariance manner for one of important of design for multifactor experiments, which called split-blocks experiments design (SBED) to deal the problem of extended measurements for a covariate variable or independent variable (X) with data of response variable or dependent variable Y in agricultural experiments that contribute to mislead the result when analyze data of Y only. Although analysis of covariance with discussed in experiments with common deign, but it is not found information that it is discussed with split-Blocks experiments design (SBED) to get rid of the impact a covariance variable. As part application actual field experiment conducted, begun at
... Show MoreThe aim of t his p aper is t o const ruct t he (k,r)-caps in t he p rojective 3-sp ace PG(3,p ) over Galois field GF(4). We found t hat t he maximum comp let e (k,2)-cap which is called an ovaloid, exist s in PG(3,4) when k = 13. Moreover t he maximum (k,3)-cap s, (k,4)-cap s and (k,5)-caps.
Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T
... Show MoreEstablishing the systemic character of vocabulary, its relationship with other language systems, their interdependence creates the possibility of a comprehensive scientific study and description of the lexical system of each language, as well as contrastive comparative studies of several languages, including their phraseological composition.
It is known that not all words-components of phraseological units are equivalent in their role in the formation of the semantic content of phraseological units. In this regard, it is necessary to introduce the concept of a lexical dominant. To this we include words, which are kind of centers around which the entire semantic complex of phraseological units, the entire set of its words-componen
... Show MoreArtificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show MoreThis study deals with the orthographic processing ability of homophones
which can account for variance in word recognition and production skills due to
phonological processing. The study aims at: A)Investigating whether the students
can recognize correct usage and spelling comprehension of different homophones
by using appropriate word that overlapped in both phonology and orthography.
B)Assessing spelling production word association to the written form of the
homophone in the sentence comprehension task. To achieve these aims, two tests
have been conducted and distributed on 50 students at first stage at the College of
Education(Ibn-Rushd) for the academic year 2010-2011. The two tests are exposed
to a jury of
Through this research, We have tried to evaluate the health programs and their effectiveness in improving the health situation through a study of the health institutions reality in Baghdad to identify the main reasons that affect the increase in maternal mortality by using two regression models, "Poisson's Regression Model" and "Hierarchical Poisson's Regression Model". And the study of that indicator (deaths) was through a comparison between the estimation methods of the used models. The "Maximum Likelihood" method was used to estimate the "Poisson's Regression Model"; whereas the "Full Maximum Likelihood" method were used for the "Hierarchical Poisson's Regression Model
... Show MoreBreast cancer is the most prevalent malignancy among women worldwide, in Iraq it ranks the first among the population and the leading cause of cancer related female mortality. This study is designed to investigate the correlations between serum and tissue markers in order to clarify their role in progression or regression breast cancer. Tumor Markers are groups of substances, mainly proteins, produced from cancer cell or from other cells in the body in response to tumor. The study was carried out from April 2018 to April 2019 with total number of 60 breast cancer women. The blood samples were collected from breast cancer women in postoperative and pretherapeutic who attended teaching oncology hospital of the medical city in Baghdad and
... Show MoreThe study using Nonparametric methods for roubust to estimate a location and scatter it is depending minimum covariance determinant of multivariate regression model , due to the presence of outliear values and increase the sample size and presence of more than after the model regression multivariate therefore be difficult to find a median location .
It has been the use of genetic algorithm Fast – MCD – Nested Extension and compared with neural Network Back Propagation of multilayer in terms of accuracy of the results and speed in finding median location ,while the best sample to be determined by relying on less distance (Mahalanobis distance)has the stu
... Show More