This research has been prepared to isolate and diagnose one of the most important vegetable oils from the plant medical clove is the famous with Alaeugenol oil and used in many pharmaceuticals were the isolation process using a technique ultrasonic extraction and distillation technology simple
The apricot plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the apricot plant using ethanol, which was then analysed using GC-MS, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using an alcoholic extract. FTIR, UV-Vis, SEM, EDX, and TEM are used to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with apricot extract and powder were employed to clean polluted water. Firstly, 2 g of zinc nanoparticles were used with 20 ml of polluted water, and the results were Tetra 44% and Levo 32%; after
... Show MoreThe gas-lift method is crucial for maintaining oil production, particularly from an established field when the natural energy of the reservoirs is depleted. To maximize oil production, a major field's gas injection rate must be distributed as efficiently as possible across its gas-lift network system. Common gas-lift optimization techniques may lose their effectiveness and become unable to replicate the gas-lift optimum in a large network system due to problems with multi-objective, multi-constrained & restricted gas injection rate distribution. The main objective of the research is to determine the possibility of using the genetic algorithm (GA) technique to achieve the optimum distribution for the continuous gas-lift injectio
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreBackground: The Epstein-Barr virus (EBV) relates to the torch virus family and is believed to have a substantial impact on mortality and perinatal events, as shown by epidemiological and viral studies. Moreover, there have been documented cases of EBV transmission occurring via the placenta. Nevertheless, the specific location of the EBV infection inside the placenta remains uncertain. Methods: The genomic sequences connected to the latent EBV gene and the levels of lytic EBV gene expression in placental chorionic villous cells are examined in this work. A total of 86 placentas from patients who had miscarriage and 54 placentas from individuals who had successful births were obtained for analysis. Results: The research employed QPCR to dete
... Show MoreCladosporium sp. plays an important role in human health, it is one of the pathogenic fungi which cause allergy and asthma and most frequently isolated from airborne spores. In this study, a couple of universal PCR primers were designed to identify the pathogenic fungi Cladosporium sp. according to conserved region 5.8S, 18S and 28S subunit ribosomal RNA gene in Cladosporium species. In silico RFLP-PCR were used to identify twenty-four Cladosporium strains. The results showed that the universal primer has the specificity to amplify the conserved region in 24 species as a band in virtual agarose gel. They also showed that the RFLP method is able to identify three Cladosporium spe
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreThis study aimed to detect Anaplasma phagocytophilum in horses through hematological and molecular tests. The 16S rRNA gene of the Anaplasma phagocytophilum parasite was amplified by polymerase chain reaction (PCR), then sequenced, and subjected to phylogenetic analysis to explore "Equine Granulocytic Anaplasmosis" (EGA) infection in three important gathering race horses areas in Baghdad governorate, Iraq. Blood samples were obtained from 160 horses of varying ages, three breeds, and both sexes, between January and December 2021. Prevalence and risk variables for anaplasmosis were analyzed using statistical odds ratio and chi-square tests. Results demonstrated that clinical anaplasmosis symptoms comprised jaundice, wei
... Show More