The Pulse Coupled Oscillator (PCO) has attracted substantial attention and widely used in wireless sensor networks (WSNs), where it utilizes firefly synchronization to attract mating partners, similar to artificial occurrences that mimic natural phenomena. However, the PCO model might not be applicable for simultaneous transmission and data reception because of energy constraints. Thus, an energy-efficient pulse coupled oscillator (EEPCO) has been proposed, which employs the self-organizing method by combining biologically and non-biologically inspired network systems and has proven to reduce the transmission delay and energy consumption of sensor nodes. However, the EEPCO method has only been experimented in attack-free networks without considering the security elements which may cause malfunctioning and cyber-attacks. This study extended the experiments by testing the method in the presence of denial-of-service (DoS) attacks to investigate the efficiency of EEPCO in attack-based networks. The result shows EEPCO has poor performance in the presence of DoS attacks in terms of data gathering and energy efficiency, which then concludes that the EEPCO is vulnerable in attack-based networks.
The nuclear charge density distributions, form factors andcorresponding proton, charge, neutron, and matter root mean squareradii for stable 4He, 12C, and 16O nuclei have been calculated usingsingle-particle radial wave functions of Woods-Saxon potential andharmonic-oscillator potential for comparison. The calculations for theground charge density distributions using the Woods-Saxon potentialshow good agreement with experimental data for 4He nucleus whilethe results for 12C and 16O nuclei are better in harmonic-oscillatorpotential. The calculated elastic charge form factors in Woods-Saxonpotential are better than the results of harmonic-oscillator potential.Finally, the calculated root mean square radii usingWoods-Saxonpotentials ho
... Show MoreThe nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square
As we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations,
... Show MoreIn this work, plasma parameters such as, the electron temperature )Te(, electron density ne, plasma frequency )fp(, Debye length )λD(
and Debye number )ND), have been studied using optical emission spectroscopy technique. The spectrum of plasma with different values of energy, Pb doped CuO at different percentage (X=0.6, 0.7, 0.8) were recorded. The spectroscopic study for these mixing under vacuum with pressure down to P=2.5×10-2 mbar. The results of electron temperature for X=0.6 range (1.072-1.166) eV, for X=0.7 the Te range (1.024-0.855) eV and X=0.8 the Te is (1.033-0.921) eV. Optical properties of CuO:Pb thin films were determined through the optical transmission method using ultraviolet visible spectrophotometer within the ra
In this work, plasma parameters such as (electron temperature (Te), electron density (ne), plasma frequency (fp) and Debye length (λD)) were studied using spectral analysis techniques. The spectrum of the plasma was recorded with different energy values, SnO2 and ZnO anesthetized at a different ratio (X = 0.2, 0.4 and 0.6) were recorded. Spectral study of this mixing in the air. The results showed electron density and electron temperature increase in zinc oxide: tin oxide alloy targets. It was located that The intensity of the lines increases in different laser peak powers when the laser peak power increases and then decreases when the force continues to increase.
Wrestling Judo, one of the sports that have seen greatdevelopment in recent years in the world, requiring preparationphysically special, which is to be determined physical aptitude of thebad functional efficiency of the heart and lungs, Efficient physicalclosely linked to the ability of the player performance, as the physicalaptitude to play an important role the possibility of control over theaspects and physical skills during training and competition.The study aims to determine the effect of training on anaerobicendurance according to the average (30-60 sec) in the development ofphysical aptitude for judo players. Used a much more extremeexperimental method on a sample was Blaabat national teamwrestling judo and numbers of 16 for the play
... Show MoreThin films Tin sulfide SnS pure and doped with different ratios of Cu (X=0, 0.01, 0.03 and 0.05) were prepared using thermal evaporation with a vacuum of 4*10-6mbar on two types of substrates n-type Si and glass with (500) nm thickness for solar cell application. X-ray diffraction and AFM analysis were carried out to explain the influence of Cu ratio dopant on structural and morphological properties respectively. SnS phase appeared forming orthorhombic structure with preferred orientation (111), increase the crystallinity degree and surface roughness with increase Cu ratio. UV/Visible measurement revealed the decrease in energy gap from 1.9eV for pure SnS to 1.5 for SnS: Cu (0.05) making these samples suitable f
... Show MoreCdO:NiO/Si solar cell film was fabricated via deposition of CdO:NiO in different concentrations 1%, 3%, and 5% for NiO thin films in R.T and 723K, on n-type silicon substrate with approximately 200 nm thickness using pulse laser deposition. CdO:NiO/n-Si solar cell photovoltaic properties were examined under 60 mW/cm2 intensity illumination. The highest efficiency of the solar cell is 2.4% when the NiO concentration is 0.05 at 723K.