A critical milestone in nano-biotechnology is establishing reliable and ecological friendly methods for fabricating metal oxide NPs. Because of their great biodegradable, electrical, mechanical, and optical qualities, zirconia NPs (ZrO2NPs) attract much interest among all zirconia NPs (ZrO2NPs). Zirconium oxide (ZrO2) has piqued the interest of researchers throughout the world, particularly since the development of methods for the manufacture of nano-sized particles. An extensive study into the creation of nanoparticles utilizing various synthetic techniques and their potential uses has been stimulated by their high luminous efficiency, wide bandgap, and high exciton binding energy. Zirconium dioxide nanoparticles may be used as antimicrobial and anticancer agents in food packaging. In response to the growing interest in nano ZrO2, researchers invented and developed methods for synthesizing nanoparticles. ZrO2 nanocomposites with various morphologies have recently been created using biological (green chemistry) methods. Microbes and plants both contribute to the production of zirconia in the laboratory. Capping and stabilizing agents are provided by the biomolecules found in plant extracts, whereas microorganisms provide enzymes as capping and stabilizing agents (intracellular or extracellular). It is possible to analyze the nanoparticles produced using a variety of analytical approaches, including ultraviolet-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). When applied to bacteria (both Gram-positive and Gram-negative) and fungi, ZrO2NPs show promising antibacterial capabilities. Normal and malignant cells are sensitive to ZrO2 nanoparticles, which can be explained by the generation of reactive oxygen (ROS). This work discusses and describes many ways of producing ZrO2 nanoparticles, their properties, and various application possibilities.
In this work, the effect of aluminum (Al) dust particles on the DC discharge plasma properties in argon was investigated. A magnetron is placed behind the cathode at different pressures and with varying amounts of Al. The plasma temperature (Te) and density (ne) were calculated using the Boltzmann equation and Stark broadening phenomena, which are considered the most important plasma variables through which the other plasma parameters were calculated. The measurements showed that the emission intensity decreases with increasing pressure from 0.06 to 0.4 Torr, and it slightly decreases with the addition of the NPs. The calculations showed that the ne increased and Te decreased with pressure. Both Te and ne were reduced by increasing
... Show MoreThe research aimed to statement, which impact that the development of Iraqi auditing standards in the fight against corruption and to fulfill the reform requirements by conducting a comparative study analysis with a framework proposal to amend the Iraqi Audit directory number statement (6) issued by the Accounting and Auditing Standards Board of the Republic of Iraq dated 08/24/2002 on audit planning and supervision on the basis of the latest versions of international auditing standards in this regard.
The researchers concluded that there is a need to update the standards (evidence) audit accredited in the Republic of Iraq in accordance with international auditing standards to meet the requirements of the report of the external a
... Show MoreThe cathodic deposition of zinc from simulated chloride wastewater was used to characterize the mass transport properties of a flow-by fixed bed electrochemical reactor composed of vertical stack of stainless steel nets, operated in batch-recycle mode. The electrochemical reactor employed potential value in such a way that the zinc reduction occurred under mass transport control. This potential was determined by hydrodynamic voltammetry using a borate/chloride solution as supporting electrolyte on stainless steel rotating disc electrode. The results indicate that mass transfer coefficient (Km) increases with increasing of flow rate (Q) where .The electrochemical reactor proved to be efficient in removing zinc and was abl
... Show MoreThe esterification of oleic acid with 2-ethylhexanol in presence of sulfuric acid as homogeneous catalyst was investigated in this work to produce 2-ethylhexyl oleate (biodiesel) by using semi batch reactive distillation. The effect of reaction temperature (100 to 130°C), 2-ethylhexanol:oleic acid molar ratio (1:1 to 1:3) and catalysts concentration (0.2 to 1wt%) were studied. Higher conversion of 97% was achieved with operating conditions of reaction temperature of 130°C, molar ratio of free fatty acid to alcohol of 1:2 and catalyst concentration of 1wt%. A simulation was adopted from basic principles of the reactive distillation using MATLAB to describe the process. Good agreement was achieved.
: The terrestrial snail Eobania vermiculata (O. F. Müller, 1774) were collected from three station in Baghdad Al- Karkh, Iraq between the period from June 2016 to July 2017. Then we studied the life cycle from the egg to maturity. We studied and photographed the external morphology of it’s shell to identified the species. This species was recorded for the first time in Baghdad.
With the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch
The present work determines the particle size based only on the number of tracks detected in a cluster created by a hot particle on the CR-39 solid state nuclear track detector and depending on the exposure time. The mathematical model of the cross section developed here gives the relationship between alpha particle emitting from the (n, α) reaction and the number of tracks created and distribution of tracks created on the surface of the track detector. In an experiment performed during this work, disc of boron compound (boric acid or sodium tetraborate) of different weights were prepared and exposed to thermal neutron from the source. Chemical etching is processes of path formation in the detector, during which a suitable etching solut
... Show More