We investigated at the optical properties, structural makeup, and morphology of thin films of cadmium telluride (CdTe) with a thickness of 150 nm produced by thermal evaporation over glass. The X-ray diffraction study showed that the films had a crystalline composition, a cubic structure, and a preference for grain formation along the (111) crystallographic direction. The outcomes of the inquiry were used to determine these traits. With the use of thin films of CdTe that were doped with Ag at a concentration of 0.5%, the crystallization orientations of pure CdTe (23.58, 39.02, and 46.22) and CdTe:Ag were both determined by X-ray diffraction. orientations (23.72, 39.21, 46.40) For samples that were pure and those that were doped with silver, the optical band gap shrank by (1.52-1.47) eV (400–1100)nm resulting in a drop in the absorption coefficient. An incident power density of (100 mW/cm2) was used to examine the I-V properties of heterojunctions created by light on a variety of clean and doped materials. In accordance with the X-ray diffraction analysis, the films had a cubic structure and dominated grain growth along the (111) crystallographic direction.
In this work, CdO:In/Si heterojunction solar cell has been made by vacuum evaporation of cadmium oxide doped with 1% of indium thin film onto glass and silicon substrates with rate deposition (3.9A/sec) and thickness(≈250nm). XRD was investigated, the transmission was determined in range (300-1100)nm and the direct band gap energy is 2.43 eV, I-V characterization of the cell under illumination was investigated , the cell shows an open circuit voltage (Voc) of 0.6 Volt, a short circuit current density (Jsc) of 12.8 mA/cm2, a fill factor (F.F) of 0.66, and a conversion efficiency (η) of 5.2%.
The structural, optical and photoelectrical properties of fabricated diffusion heterojunction (HJ) solar cell, from n-type c-Si wafer of [400] direction with Boron, has been studied. AgAl alloys was used because of its properties that affect as a good connection materials. TiO2 has been used as a reflecting layer to increase the absorption radiation. The HJ has direct allowed energy gap equal to 3.1 eV. The c-Si/B HJ solar cell yielded has an active area conversion efficiency of 16.4% with an open circuit voltage of (Voc) 0.592V, short circuit current (Isc) of 2.042mA, fill factor (F.F) of 0.682 and % =10.54.
CdS films were prepared by thermal evaporation at pressure (10-6torr) of 1μm thickness onto glass substrate by using (Mo) boat. The optical properties of CdS films, absorbance, transmittance and reflectance were studied in wavelength range of (300-900)nm. The refractive index, extinction coefficient, and absorption coefficient were also studied. It's found that CdS films have allowed direct and forbidden transition with energy gap 2.4eV and 2.25eV respectively and it also has high absorption coefficient (α >104cm-1).