Land use change, particularly the expansion of urban areas and associated human activities at the expense of natural and semi-natural areas, is a major ecological issue in urban areas around the world. Climate change being a very strong additional driver for changing the temperature and habitat in the cities. This also applies to Baghdad, Iraq, where urbanisation and climate change exerts a major pressure on the natural habitats of the city, and thus may affect the ability of city planners to adapt to future climate change scenarios. Here we present evidence of substantial growth in urban areas, increases in temperature, and degradation of natural vegetation within Baghdad city by using Remote Sensing techniques and an assessment for the Jadriyah and Umm Al-Khanazeer site (JUKI). These changes were associated with loss of bird species richness within the area, which was previously the only Important Bird Area (IBA) within the city. A standardised scoring system (following Birdlife International global framework) was used to assess Pressure-State-Response: JUKI site scored 3-5 for pressure (Medium), two for the state (Moderate), and two for the response (Low). Despite the degradation highlighted in Baghdad city, the JUKI site still has 88% intact habitat to support bird trigger species. We conclude that the site urgently needs a detailed management plan to ensure the protection of its habitats and avian fauna, and that the area should be declared as a protected area according to the “IUCN Category IV: Habitat/Species Management Area; to provide a means by which the urban residents may obtain regular contact with nature”, and re-designated JUKI as an IBA site. The study also identifies the most affected areas in the city of Baghdad, which should take the priority of the afforestation efforts and any future restoration campaigns.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreIn this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
In this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.
In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator. e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated. e sucient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to conrm the theoretical results.