The root-mean square-radius of proton, neutron, matter and charge radii, energy level, inelastic longitudinal form factors, reduced transition probability from the ground state to first-excited 2+ state of even-even isotopes, quadrupole moments, quadrupole deformation parameter, and the occupation numbers for some calcium isotopes for A=42,44,46,48,50 are computed using fp-model space and FPBM interaction. 40Ca nucleus is regarded as the inert core for all isotopes under this model space with valence nucleons are moving throughout the fp-shell model space involving 1f7/2, 2p3/2, 1f5/2, and 2p1/2 orbits. Model space is used to present calculations using FPBM interaction, and with the effects of core-polarization are obtained by the first order core polarization through a microscopic theory is called modified surface delta interaction which allows all higher orbits are excited by particle-hole excitation from the core and model space orbits. Also, each isotope's effective charge is determined by using the collective model by Bohr and Mottelson formula. The current result corresponds to the experimental data by taking into account core polarization effects.
DNA, as the basis of every living cell, is one of the most important and influential scientific discoveries. This research aims to identify and compare the organizational DNA to the leadership practices of school principals in the Sultanate of Oman and to reveal the similarity between principals’ leadership practices and the structure of DNA. In addition, it intends to identify any statistically significant differences between the responses of the participants due to the study variables: gender, job title and experience. A questionnaire was designed and data were collected from a randomly selected sample composed of (100) teachers in the Sultanate of Oman. The study found limitless diversity in the characteristics of DNA of leadership
... Show MoreNuclear structure of 29-34Mg isotopes toward neutron dripline have been investigated using shell model with Skyrme-Hartree–Fock calculations. In particular nuclear densities for proton, neutron, mass and charge densities with their corresponding rms radii, neutron skin thicknesses and inelastic electron scattering form factors are calculated for positive low-lying states. The deduced results are discussed for the transverse form factor and compared with the available experimental data. It has been confirmed that the combining shell model with Hartree-Fock mean field method with Skyrme interaction can accommodate very well the nuclear excitation properties and can reach a highly descriptive and predictive power when investiga
... Show MoreThe aim of this study is to show the concepts of nuclear shape and the geometrical picture to the even-even nuclei of 164,166,168E isotopes in the context of the Interacting boson Model IBM-1. The energy spectra were calculated and the effective charge values (eB) of the electromagnetic transition strength were obtained and used to calculate the B(E2) values of the electromagnetic transitions and the quadrupole moment Q of 2+ -states. The Hamiltonian parameters were calculated by taking in account the properties of these nuclei. Comparison were made with the available experimental data and included in tables. The geometrical picture of these nuclei were looked at by calculating the deformation which were represented by the potentia
... Show MoreThe radial wavefunctions of transformed harmonic-oscillator in the local scale transformation technique are used to calculate the root-mean square proton, charge, neutron and matter radii, nuclear density distributions and elastic electron scattering charge form factors of stable (10,11B) and (unstable) exotic (8,14,17B) Boron isotopes. For 10B and 11B, the transformed harmonic-oscillator wavefunctions are applied to all subshells in no-core shell model approach using wbp interaction. For 8,14,17B, the radial wavefunctions of harmonic-oscillator and THO are used to calculate the aforementioned quantities for the core and halo parts, respectively. The calculate
... Show MoreThe topic of the research revolves around constructivist theory, which is one of the most important theories that added weight to the theoretical and epistemological field of international relations. The constructivist theory studies international relations from a completely different side of theories by focusing on the social aspects of international relations, and by looking at international relations as social constructs. Ideas, cultures, norms, standards and language play a major role in their formation. The study also examines the state of the war on terrorism as it represents one of the most international cases in which its composition and composition coincide with constructive ideas and a
... Show MoreThe Standards on Speedy Trial and Timely Resolution of Criminal Cases have some main purposes such as effectuate the right of the accused to a speedy trial, to further the interests of the public, including victims and witnesses, in the fair, accurate, and timely resolution of criminal cases; and to ensure the effective utilization of resources. Despite the importance of these principals, the Penal Legislator needs to recognize such principals in order to avoid the problem of prolonging the criminal proceedings. This study highlights the issue of delaying in criminal trials, and prolong the criminal proceedings, and to speed the Criminal Procedure, and how to avoid the problem and the dilemma around the lack of speeding of Criminal Proce
... Show MoreThe energy level scheme of 188Os has been established on the basis of
y-y coincidence measurements. Ge (Li) and HPGe detectors were
employed to study the gamma spectra produced in the -decay of 188Re to
188Os. Fourteen new transitions and four new levels at 1660, 1871, 1948
188and 2034 keV are suggested. Relative intensities from singles
measurements, branching ratios and loft values were calculated and
multipolarities, spins and parities deduced
Electric Quadrupole transitions are calculated for beryllium isotopes (9, 10, 12 and 14). Calculations with configuration mixing shell model usually under estimate the measured E2 transition strength. Although the consideration of a large basis no core shell model with 2ℏtruncations for 9,10,12 and14 where all major shells s, p, sd are used, fail to describe the measured reduced transition strength without normalizing the matrix elements with effective charges to compensate for the discarded space. Instead of using constant effective charges, excitations out of major shell space are taken into account through a microscopic theory which allows particle–hole excitations from the core and model space orbits to all higher orbits
... Show MoreDensity Functional Theory at the generalized-gradient approximation level coupled with large unit cell method is used to simulate the electronic structure of (II-VI) zinc-blende cadmium sulfide nanocrystals that have dimensions 2-2.5 nm. The calculated properties include lattice constant, conduction and valence bands width, energy of the highest occupied orbital, energy of the lowest unoccupied orbital, energy gap, density of states etc. Results show that lattice constant and energy gap converge to definite values. However, highest occupied orbital, lowest unoccupied orbital fluctuates indefinitely depending on the shape of the nanocrystal.
This presented study is to make comparison of cross sections to produce 71As, 72As, 73As and 74As via different reactions with particle incident energy up to 60 MeV of alpha 100 MeV of proton as a part of systematic studies on particle-induced activations on enriched Ge, Ga, Rb and Nb targets and neutron capture. Theoretical calculation of production yield, and suggestion of optimum reaction to produce 71As, 72As, 73As and 74As, based on the main published and approved experimental results of excitation functions were calculated.