in this paper fourth order kutta method has been used to find the numerical solution for different types of first liner
It is well-known that the existence of outliers in the data will adversely affect the efficiency of estimation and results of the current study. In this paper four methods will be studied to detect outliers for the multiple linear regression model in two cases : first, in real data; and secondly, after adding the outliers to data and the attempt to detect it. The study is conducted for samples with different sizes, and uses three measures for comparing between these methods . These three measures are : the mask, dumping and standard error of the estimate.
This research is concerned with the study of (the aesthetic of constructive relations in linear composition) with what distinguished Arabic calligraphy through the style and artistic method in its construction, and the specifications it carries that enabled it to pay attention to building formations to achieve in its total linear ranges aesthetic values and relationships. Through the research, the models and the exploratory study that he obtained, the researcher was able to raise the research problem in the first chapter according to the following question: What is the aesthetic of constructive relations in linear formation?
The importance of the research in achieving the aesthetics of the formations, which is a wide field according t
In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.
In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
Shallow foundations have been commonly used to transfer load to soil layer within the permissible limits of settlement based on the bearing capacity of the soil. For most practical cases, the shape of the shallow foundation is of slight significance. Also, friction resistance forces in the first layers of soils are negligible due to non-sufficient surrounding surface area and compaction conditions. However, the bearing capacity of a shallow foundation can be increased by several techniques. Geocell is one of the geosynthetic tool applied mainly to reinforce soil. This study presents a numerical approach of honeycombed geocell steel panels reinforcing the sandy soil under shallow foundation, and several parameters are investigated such as th
... Show MoreKrawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the
... Show MoreIn this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.