Acinetobacter baumannii (A. baumannii ) is considered a critical healthcare problem for patients in intensive care units due to its high ability to be multidrug-resistant to most commercially available antibiotics. The aim of this study is to develop a colorimetric assay to quantitatively detect the target DNA of A. baumannii based on unmodified gold nanoparticles (AuNPs) from different clinical samples (burns, surgical wounds, sputum, blood and urine). A total of thirty-six A. baumannii clinical isolates were collected from five Iraqi hospitals in Erbil and Mosul provinces within the period from September 2020 to January 2021. Bacterial isolation and biochemical identification of isolates were carried out followed by DNA extraction from 36 isolates and six negative ATCC strains (Salmonalle typhi, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Enterobacter aeruginosa, Staphylococcus aures) and only one positive control ATCC A. baumannii using Phenol/Chloroform method. AuNPs were synthesized using the citrate reduction method and examined by XDR, FTIR, UV-VIS, FE-SEM, and TEM. The optimized colorimetric assay was employed based on unmodified spherical AuNPs and PCR amplification of 16S rRNA intergenic spacer sequences (ITS) with species-specific DNA oligo-targeters. Detection and optimization of A. baumannii amplicons using unmodified AuNPs were performed based on species-specific DNA oligonucleotide. The AuNPs assay was able to colorimetrically detect and distinguish A. baumannii from other ATCC bacterial isolates. The turnaround time of this assay was about 3 hours, including sample preparation and amplification, to show (0.025-6 ngµl-1) as a detection limit of DNA concentration. The efficacy of colorimetric detection was proved to effectively diagnose A. baumannii isolates with high sensitivity, simplicity, and robustness to rapidly diagnose A. baumannii isolates from different clinical samples.
Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
This approach was developed to achieve an accurate, fast, economic and sensitivity to estimation of diphenhydramine Hydrochloride. The dye that produced via reaction between diphenhydramine HCl with thymol blue in acidic medium pH ≈ 4.0. The ion pair method include an optimization study to formed yellowcolored that extraction by liquid – liquid method. The product separated of complexes by using by chloroform solution measured spectrophotometry at 400 nm. The analysis data at optimum conditions showed that linearity concentration in a range of calibration curve 1.0 – 50 μg /mL, limit of detectionand limit of quantification 0.0786 and 0.2358 μg/mL respectively. The molar absorptivity and Sandell’s sensitivity were 1.8 × 10 -4 L/mo
... Show MoreIn this work, electron number density calculated using Matlab program code with the writing algorithm of the program. Electron density was calculated using Anisimov model in a vacuum environment. The effect of spatial coordinates on the electron density was investigated in this study. It was found that the Z axis distance direction affects the electron number density (ne). There are many processes such as excitation; ionization and recombination within the plasma that possible affect the density of electrons. The results show that as Z axis distance increases electron number density decreases because of the recombination of electrons and ions at large distances from the target and the loss of thermal energy of the electrons in high distance
... Show MoreSoftware Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
Management of Foreign Exchange Rate Exposure by Using Financial Hedging An Analytical Empirical Study The main purpose of this Research is to investigate the ability to reduce the effect of exchange rate fluctuation on firm value , by usage appropriate hedging strategies to provide the firms force to adopted with complex and highly uncertainty conditions , characteristic of the most of the financial markets . The field of this study is the giant five Multinational on the world. Nokia, Toyota Motor, Intel , Coca Cola, Microsoft. practical analysis is provide the truth of all study's hypothesis , and it is reach to many of conclusion, the most important of them is Stem from unexpected fluctuation on nominal ex
... Show MoreThe gas chromatography (GC) method in analytical chemistry is a quick and accurate method to detect volatile components like ethanol. A method for determining volatile components known as Headspace chromatography (HS-GC) was developed along with an internal standard method (ISM) to identify ethanol in fermented broth in the laboratory. The aim of this research is determining the concentration of ethanol in fermented broth using capillary column (ZB-1). This method can analyze ethanol concentrations in the fermented medium broth ranging from 10 to 200 g/L. The validation of this method was done in order to obtain the results to be of high precision and the significant, precision was represented as the relative standard deviation (RSD) which
... Show More