Based on the diazotization-coupling reaction, a new, simple, and sensitive spectrophotometric method for determining of a trace amount of (BPF) is presented in this paper. Diazotized metoclopramide reagent react with bisphenol F produces an orange azo-compound with a maximum absorbance at 461 nm in alkaline solution. The experimental parameters were optimized such as type of alkaline medium, concentration of NaOH, diazotized metoclopramide amount, order additions, reaction time, temperature, and effect of organic solvents to achieve the optimal performance for the proposed method. The absorbance increased linearly with increasing bisphenol F concentration in the range of 0.5-10 μg mL-1 under ideal conditions, with a correlation coefficient of 0.9931 and a detection limit of 0.15 μg mL-1. The effect of different temperatures and different extraction time was studied on the leaching out and the data indicates that as time and temperature rising, the concentration of BPF leached out of all thermal papers increased. To confirm that extracts from thermal papers contained BPF, samples containing the analytic were subjected to high-performance liquid chromatography (HPLC-UV detector) analysis. The analysis was carried out on a C18 column with a mobile phase of acetonitrile/water (55/45v:v), and the detection was conducted spectrophotometrically at 230 nm. The retention time of standard BPF was determined to be 5.649 min and the peak eluting time for most thermal papers extract was at 5.6 minutes, demonstrating that BPF was present in the thermal papers. The method was applied to quantify the proposed analyses in a variety of samples with excellent results.
Nitroso-R-salt is proposed as a sensitive spectrophotometric reagent for the determination of paracetamol in aqueous solution. The method is based on the reaction of paracetamol with iron(III) and subsequent reaction with nitroso-R-salt to yield a green colored complex with maximum absorption at 720 nm. Optimization of the experimental conditions was described. The calibration graph was linear in the concentration range of 0.1 – 2.0 ?g mL-1 paracetamol with a molar absorptivity of 6.9 × 104 L mol-1 cm-1. The method was successfully applied to the determination of paracetamol in pharmaceutical preparations without any interference from common excipients. The method has been statistically evaluated with British Pharmacopoeia method a
... Show MoreA new simple and sensitive spectrophotometric method for the determination of trace amount of Cu(II) in the ethanol solution have been developed. The method is based on the complexation of Cu(II) with ethyl cyano(2-methyl carboxylate phenyl azo acetate) (ECA) in basic medium of sodium hydroxide givining maximum absorbance at (λmax = 521 nm). Beer's law is obeyed over the concentration range (5-50) (μg / ml) with molar absorptivity of (3.1773 × 102 L mol-1 cm-1) and correlation coefficient (0.9989). The optimum conditions for the determination of Cu(II)-complex and have been studied and applied to determine Cu(II) in synthetic water sample using simple and standard addition methods.
New simple and sensitive spectrophotometric methods for the determination of paracetamol in aqueous medium were developed. The first method is based on coupling of paracetamol with p-amino-2-hydroxy sodium benzoate (AHB) in the presence of sodium periodate, as oxidizing agent, to form a brownish-orange compound which shows a λmax at 470 nm. The molar absorptivity (εmax) of the colored product was found to be (3371) l. mole1. cm-1 and Sandel’s index 0.0449 μg. cm-2. The method follows Beer’s law in the concentration range of 12.5-500.0 μg of paracetamol in a final volume of 25 ml (0.5-20.0) μg. ml-1 with relative standard deviation percent (RSD%) ranged between 0.26-4.71% and accuracy, expressed by recovery percent, 95-106% for five
... Show MoreNew simple and sensitive spectrophotometric methods for the determination of paracetamol in aqueous medium were developed. The first method is based on coupling of paracetamol with p-amino-2-hydroxy sodium benzoate (AHB) in the presence of sodium periodate, as oxidizing agent, to form a brownish-orange compound which shows a λmax at 470 nm. The molar absorptivity (εmax) of the colored product was found to be (3371) l.mole1.cm-1 and Sandel’s index 0.0449 μg.cm-2. The method follows Beer’s law in the concentration range of 12.5-500.0 μg of paracetamol in a final volume of 25 ml (0.5-20.0) μg.ml-1 with relative standard deviation percent (R.S.D%) ranged between 0.26-4.71% and accuracy, expressed by recover
... Show MoreA rapid, simple and sensitive spectrophotometric method for the determination of trace amounts of chromium (VI) was studied. The method is based on the reaction of chromium (VI) with promethazine forming a red colored species by chromium in hydrochloric acid medium and exhibits a maximum absorbance at 518 nm. A plot of absorbance with chromium (VI) gives a straight line indicating that Beer’s law has been obeyed over the range concentration of 0.05-4.0 µg/ml with a molar absorptivity of chromium(VI) 2.04  104 l.mol-1.cm-1 , Sandell’s sensitivity index of 0.0025 µg.cm-2 while the limit of detection (LOD) was found to be 0.0924 µg.ml
... Show MoreA sensitive, accurate, and affordable colorimetric method was developed for assaying prednisolone (PRZ) in various medicinal forms. The procedure involves the oxidation of PRZ by ferric ions, followed by complexation of the resulting ferrous ions with ferricyanide to produce a greenish-blue product. Common complexation conditions were thoroughly investigated. The mole ratio of FeCl₃·6H₂O to K₃Fe(CN)₆ was 8:1. The proposed mechanism of complexation was suggested and considered. Various parameters were optimized, including the reduction of the colorimetric reaction temperature to 50°C and the duration of heating and analysis to 20-30 minutes. The calibration curve was linear over the range of 1-60 µg/mL. The limit of detection (LOD
... Show MoreA simple, sensitive, accurate and economic spectrophotometric method has been developed for the determination of sulfacetamide (SFA) in pure form, synthetic sample and urine. The method is based on diazotization of primary amine group of sulfacetamide with sodium nitrite and hydrochloric acid followed by coupling with chromotropic acid in alkaline medium to obtain a stable orange colored chromogen which exhibit a maximum absorption (λmax) at 511.5 nm. Different variables affecting the completion of reaction have been carefully optimized following the classical univariate sequence and modified simplex method (MSM). Under optimized conditions, Beer’s law obeyed in the concentration range of (0.5- &nbs
... Show MoreWater saturation is the most significant characteristic for reservoir characterization in order to assess oil reserves; this paper reviewed the concepts and applications of both classic and new approaches to determine water saturation. so, this work guides the reader to realize and distinguish between various strategies to obtain an appropriate water saturation value from electrical logging in both resistivity and dielectric has been studied, and the most well-known models in clean and shaly formation have been demonstrated. The Nuclear Magnetic Resonance in conventional and nonconventional reservoirs has been reviewed and understood as the major feature of this approach to estimate Water Saturation based on T2 distribution. Artific
... Show MoreThe combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.
In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.
&n
... Show MoreA simple and accurate method to determinate furosemide (FUR) based on converting the secondary amine to primary amine with acidic hydrolysis then azotization by nitrous acid and coupled with resorcinol as a coupling agent in aqueous medium at pH 13. The optical characteristic like beers law limit found to be (0.25-2.5) μg.ml−1, detection and quantification limits (0.0196) (0.0654) μg.ml−1respectivly and Sandel sensitivity was 0.006738 μg.cm−2. The least-square method was used to evaluate the regression equation and the correlation coefficient. The resulted azo dye has a maximum absorbance at 430 nm with light oran