New simple and sensitive spectrophotometric methods for the determination of paracetamol in aqueous medium were developed. The first method is based on coupling of paracetamol with p-amino-2-hydroxy sodium benzoate (AHB) in the presence of sodium periodate, as oxidizing agent, to form a brownish-orange compound which shows a λmax at 470 nm. The molar absorptivity (εmax) of the colored product was found to be (3371) l.mole1.cm-1 and Sandel’s index 0.0449 μg.cm-2. The method follows Beer’s law in the concentration range of 12.5-500.0 μg of paracetamol in a final volume of 25 ml (0.5-20.0) μg.ml-1 with relative standard deviation percent (R.S.D%) ranged between 0.26-4.71% and accuracy, expressed by recovery percent, 95-106% for five levels of parcetamol concentration. The second method is based on indirect spectrophotometric procedure for the determination of paracetamol, after its hydrolysis in acidic medium and the reaction of hydrolyzed product (p-aminophenol) with p-amino-2-hydroxy sodium benzoate in the presence of sodium periodate in alkaline medium. A bluish-violet water soluble compound is formed with λmax =580nm and εmax =11884 l.mole-1.cm-1 and Sandel’s index 0.0127 μg.cm-2. Beer’s law is applicable for concentration range of paracetamol 12.5-500.0 μg per 25 ml volume of solution (0.5-20.0) μg.ml-1 with (R.S.D %) ranged between 0.60-1.10 % and recovery percent 94.28-101.6% for three levels of parcetamol concentration. The proposed methods were successfully applied for the determination of paracetamol in pharmaceutical preparations by both direct and standard addition method and for three levels of concentration.
New simple and sensitive spectrophotometric methods for the determination of paracetamol in aqueous medium were developed. The first method is based on coupling of paracetamol with p-amino-2-hydroxy sodium benzoate (AHB) in the presence of sodium periodate, as oxidizing agent, to form a brownish-orange compound which shows a λmax at 470 nm. The molar absorptivity (εmax) of the colored product was found to be (3371) l. mole1. cm-1 and Sandel’s index 0.0449 μg. cm-2. The method follows Beer’s law in the concentration range of 12.5-500.0 μg of paracetamol in a final volume of 25 ml (0.5-20.0) μg. ml-1 with relative standard deviation percent (RSD%) ranged between 0.26-4.71% and accuracy, expressed by recovery percent, 95-106% for five
... Show MoreA new, simple, rapid and sensitive spectrophotometric method for the determination of sulfamethoxazole in both pure form and pharmaceutical preparations has been reported.The adapted technique based on utilization 4-aminobenzene sulfonic acid as a new modern chromogenic through an oxidative coupling reaction with sulfamethoxazole and potassium iodate in basic media to form orange soluble dye product with absorption maxima at 490 nm. Subject to Beer's law in the range 2–32μg mL-1. The values of molarabsorption coefficient (ε) and correlation coefficient were found to be 9.118 × 103 and0.9999 respectively whereas the Sandels index was
... Show MoreA simple, and rapid spectrophotometric method for the estimation of paracetamol has been developed. The methods is based on diazotisation of 2,4-dichloroaniline followed by a coupling reaction with paracetamol in sodium hydroxide medium. All variables affecting the reaction conditions were carefully studied. Beer's law is obeyed in the concentration range of 4-350 ?gml?1 at 490 nm .The method is successfully employed for the determination of paracetamol in pharmaceutical preparations. No interferes observed in the proposed method. Analytical parameters such as accuracy and precision have been established for the method and evaluated statistically to assess the application of the method.
Tow simple, rapid and sensitive spectrophotometric methods for the determination of mesalazine in pharmaceutical preparations have been carried out. The proposed methods depend on oxidative coupling reaction of mesalazine with m-aminophenol in the existence of N-bromosuccinamide in alkaline medium (method A) and 2,6-dihydroxybenzoic acid in the existence of sodium metaperiodate in basic medium (method B) to produce colored products , show highest absorptions at 640 (nm) and 515 (nm), alternately. Beer’s law was consistent in concentrations extent of 1.25-30 and 0.5-12.5 (µg.mL-1) with molar absorptivity of 0.36×104 and 0.77×104 L.mol-1.cm<
... Show MoreA simple, fast, and sensitive batch and flow injection spectrophotometric
methods have been developed for the determination of clonazepam(CZP) in pure
form and in pharmaceutical preparations. The proposed methods are based on the
oxidative coupling reaction of the reduced clonazepam using Zn powders and conc.
HCl with payrocatechol and in the presence of ferric sulphate. The resulting reddish
colored product had a maximum absorbance at 515 nm. The optimum reaction
conditions and other analytical parameters have been evaluated . The linear ranges
for the batch and FI methods determination of CZP were 0.5-32, 50-400 μg mL-1
and the detection limits were 0.193, 22.60 μg mL-1 for both methods respectively.
Statis
A simple, fast, and sensitive spectrophotometric method was suggested for the determination of Bromhexine Hydrochloride (BHH) in its pharmaceutical formulations. The method depends on the diazotization of BHH by sodium nitrite in acidic medium to produce the corresponding diazonium salt. The latter is coupled with phloroglucinol reagent in alkali medium to form a yellow water soluble azo-dye which has a maximum absorption at 405 nm with a molar absorptivity of 2.7×104 l.mol-1.cm-1 and Sandellʼs sensitivity of 0.01517 µg.cm-1. Beerʼs low is obeyed within a concentration range of 0.25-15 µg.mL-1 of BHH. The LOD and LOQ values of the proposed method were 0.087 µg.mL
A new, simple and sensitive spectrophotometric method for the determination of Thymol in pure and mouth wash preparations has been proposed in this study. The method was based on oxidation of 2,4-dinitrophenylhydrazine with potassium periodate and coupling with Thymol in alkaline medium to form an intense violet water-soluble dye that is stable and has a maximum absorption at 570 nm. A graph of absorbance versus concentration shows that Beer’s law was obeyed over the concentration range of 0.25-10 μg.mL-1 of Thymol, with detection limits of 0.063 μg.mL-1. All experimental parameters that affect the development and stability of the colored product were carefully studied and the proposed method was successfully applied to the determina
... Show MoreAbstract
A sensitive, precise and reliable indirect spectrophotometric method for the determination of chlordiazepoxide (CDE) in pure and pharmaceutical dosage forms is described. The method is based on oxidative coupling reaction between amino group resulting from acidic decomposition of CDE with phenothiazine in the presence of sodium periodate to produce an intense green soluble dye that is stable and shows a maximum absorption at 602 nm. The calibration plot indicates that Beer’s law is obeyed over the concentration range of 0.1?50 µg/mL, with a molar absorptivity of 1×104 L/mol cm and correlation coefficient of 0.9994.All the conditions that affecting on the stability and sensitivity of the fo
... Show MoreThis paper concerned with development of a spectrophotometric method for the determination of paracetamol, based on the diazotisation and coupling reaction with anthranilic acid in basic medium, to form an intense yellow coloured, water-soluble and stable azo-dye which shows a maximum absorption at 421nm. Beer’s law is obeyed over the concentration range of 1.0-10 µg/ml; with molar absorptivity of 2.1772×104 L.mol -1.cm-1 and Sandell’s sensitivity index 6.9446 µg.cm-2. The method has been applied successfully for the determination of paracetamol in pharmaceutical formulation.