Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
Time and space are indispensable basics in cinematic art. They contain the characters, their actions and the nature of events, as well as their expressive abilities to express many ideas and information. However, the process of collecting space and time in one term is space-time, and it is one of Einstein’s theoretical propositions, who sees that Time is an added dimension within the place, so the study here differs from the previous one, and this is what the researcher determined in the topic of his research, which was titled (The Dramatic Function of Space-Time Variables in the Narrative Film), Which included the following: The research problem, which crystallized in the following question: What is the dramatic function of the tempor
... Show MoreThe research seeks to examine the image of women in Iraqi films produced after 2003 over the answer to questions such as “ level of the representation of women and appearing in films and features that are attributable to them and their relationships with men and their interests and tendencies , activities and ways and methods pursued to achieve their goals , or what appeared to be trying to achieve and whether made movies vivid and varied models for women, or confined to a rigid model and duplicate Is films raised issues concerning women? The research seeks to examine the image of women in Iraqi films produced after 2003 over the answer to questions such as “ level of the representation of women and appearing in films and features th
... Show MoreThe subject of marketing culture and mental image is one of the important topics in the field of management. There is no study that combines these two variables. The research is important because of the increasing importance of the subject. The future direction of the company in question will support the company's economic and marketing responsibilities. And reflect the company's mental image, as a culture that contributes to changing the reality of the organization investigated by polling the views of a sample of managers in the General Company for Vegetable Oil Industry, which (30) out of the (65) individual, and There are two hypotheses of research: There is a significant
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreABSTRACT
Naproxen(NPX) imprinted liquid electrodes of polymers are built using polymerization precipitation. The molecularly imprinted (MIP) and non imprinted (NIP) polymers were synthesized using NPX as a template. In the polymerization precipitation involved, styrene(STY) was used as monomer, N,N-methylenediacrylamide (N,N-MDAM) as a cross-linker and benzoyl peroxide (BPO) as an initiator. The molecularly imprinted membranes and the non-imprinted membranes were prepared using acetophenone(AOPH) and di octylphathalate(DOP)as plasticizers in PVC matrix. The slopes and detection limits of the liquid electrodes ranged from)-18.1,-17.72 (mV/decade and )4.0 x 10-
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreThis paper deals with the design and implementation of an ECG system. The proposed system gives a new concept of ECG signal manipulation, storing, and editing. It consists mainly of hardware circuits and the related software. The hardware includes the circuits of ECG signals capturing, and system interfaces. The software is written using Visual Basic languages, to perform the task of identification of the ECG signal. The main advantage of the system is to provide a reported ECG recording on a personal computer, so that it can be stored and processed at any time as required. This system was tested for different ECG signals, some of them are abnormal and the other is normal, and the results show that the system has a good quality of diagno
... Show MoreAbstract: The aim of the current research is to identify (the relationship between deep understanding skills and mathematical modeling among fifth grade students) the research sample consisted of (411) male and female students of the fifth grade of biology distributed over the General Directorates of Education in Baghdad / Al-Rusafa / 2 / and Al-Karkh / 1 /, and two research tools were built: 1- A test of deep understanding skills, consisting of (20) test items and a scale for two skills. 2- The second test consists of (24) test items distributed among (18) essay items and (6) objective items. The psychometric properties of validity, stability, discriminatory strength, and effectiveness of alternatives were verified for the two tests fo
... Show More