Preferred Language
Articles
/
bsj-6782
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 01 2015
Journal Name
Applied And Computational Mathematics
Texture Classification Using Spline, Wavelet Decomposition and Fractal Dimension
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Fri Mar 10 2017
Journal Name
Superconductor Science And Technology
Conceptual designs of conduction cooled MgB<sub>2</sub> magnets for 1.5 and 3.0 T full body MRI systems
...Show More Authors

View Publication
Scopus (64)
Crossref (61)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
A Modified Support Vector Machine Classifiers Using Stochastic Gradient Descent with Application to Leukemia Cancer Type Dataset
...Show More Authors

Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Dec 29 2017
Journal Name
Al-khwarizmi Engineering Journal
Microcontroller – Based Spectrum Analyzer
...Show More Authors

This work includes design, implementation and testing of a microcontroller – based spectrum analyzer system. Both hardware and software structures are built to verify the main functions that are required by such system. Their design utilizes the permissible and available tools to achieve the main functions of the system in such a way to be modularly permitting any adaptation for a specific changing in the application environment. The analysis technique, mainly, depends on the Fourier analysis based methods of spectral analysis with the necessary required preconditioning processes. The software required for waveform analysis has been prepared. The spectrum of the waveform has been displayed, and the instrument accuracy has been checked.

... Show More
View Publication
Publication Date
Thu Jan 30 2020
Journal Name
Al-kindy College Medical Journal
Comparison between the Patterns of Common Breast Diseases Presenting as Breast Lumps in Pregnant and Non-Pregnant Married Women
...Show More Authors

Background: Breast lump is one of the most common prevalent complaint of patients attending breast clinics.

Objective: To determine if there is any change in the pattern of common breast, diseases presenting as breast lumps between pregnant and non-pregnant women among patients attending Al-Elwiya Breast Clinic.

Methods: This is a cross – sectional study, with convent's patient sampling setting in AL-Elwiya Breast Cancer Early Detection Clinic from 1st Feb. to 1st May 2018, we collected data from patients with breast lumps including the age groups, pregnancy status, parity status, previous breast diseases, hormonal drugs, menstrual cycle, breast fe

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Al-kindy College Medical Journal
Automated breast ultrasound: A comparison study with handheld ultrasound in detection and characterization of lesions in mammographically dense breast
...Show More Authors

Background: Although mammography is a powerful screening tool in detection of early breast cancer, it is imperfect, particularly for women with dense breast, which have a higher risk to develop cancer and decrease the sensitivity of mammogram, Automated breast ultrasound is a recently introduced ultrasonography technique, developed with the purpose to standardize breast ultrasonography and overcome some limitations of handheld ultrasound, this study aims to evaluate the diagnostic efficacy of Automated breast ultrasound and compare it with handheld ultrasound in the detection and characterization of breast lesions in women with dense breasts. Objectives: To evaluate the diagnostic efficacy of Automated breast ultrasound and compare

... Show More
Crossref
Publication Date
Sun Apr 03 2022
Journal Name
Iraqi Journal Of Laser
On the use of Aluminium as a plasmonic material in polarization rotators based on a hybrid plasmonic waveguide
...Show More Authors

: The Aluminium (Al) material emerged as a plasmonic material in the wavelength ranges from the ultraviolet to the visible bands in different on-chip plasmonic applications. In this paper, we demonstrate the effect of using Al on the electromagnetic (EM) field distribution of a compact hybrid plasmonic waveguide (HPW) acting as a polarization rotator. We compare the performance of Al with other familiar metals that are widely used as plasmonic materials, which are Silver (Ag) and Gold (Au). Furthermore, we study the effect of reducing the geometrical dimensions of the used materials on the EM field distributions inside the HPW and, consequently, on the efficiency of the polarization rotation. We perform the study based o

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 25 2017
Journal Name
Al-khwarizmi Engineering Journal
Utilizing a Magnetic Abrasive Finishing Technique (MAF) Via Adaptive Nero Fuzzy(ANFIS)
...Show More Authors

 Abstract

An experimental study was conducted for measuring the quality of surface finishing roughness using magnetic abrasive finishing technique (MAF) on brass plate which is very difficult to be polish by a conventional machining process where the cost is high and much more susceptible to surface damage as compared to other materials. Four operation parameters were studied, the gap between the work piece and the electromagnetic inductor, the current that generate the flux, the rotational Spindale speed and amount of abrasive powder size considering constant linear feed movement between machine head and workpiece. Adaptive Neuro fuzzy inference system  (ANFIS) was implemented for evaluation of a serie

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
International Archives Of Medicine
The role of MRI in the diagnosis of intra articular knee derangement: A prospective study
...Show More Authors

View Publication Preview PDF
Crossref
Publication Date
Sat Dec 17 2022
Journal Name
Iraqi Journal Of Laser
PDF S and U shape offset studying of the refractive index sensor based on coreless fiber: Aya R. Mejble* Hanan J.Taher
...Show More Authors

Abstract:  Two different shapes of offset optical fiber was studied based on coreless fiber for refractive index (RI)/concentration (con.) measurement, and compare them. These shapes are U and S-shapes, both shapes structures were formed by one segment of coreless fiber (CF) was joined between two single mode (SMF) lead in /lead out with the same displacement (12.268µm) at both sides, the results shows the high sensitive was achieved in a novel S-shape equal 98.768nm/RIU, to our knowledge, no one has ever mentioned or experienced it, it’s the best shape rather than the U-shape which equal 85.628nm/RIU. In this research, it was proved that the offset form has a significant effect on the sensitivity of the sensor. Addi

... Show More
View Publication Preview PDF