Preferred Language
Articles
/
bsj-6652
Generative Adversarial Network for Imitation Learning from Single Demonstration

Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing considered tasks despite the limitation in the number of expert demonstrations, which clearly indicate the potential of our model.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 28 2021
Journal Name
Journal Of The College Of Education For Women
Social Protection and its Impact on the Cohesion of Vulnerable Groups: A Field Study of a Sample Social Protection Network Beneficiaries: دينا داود محمد المولى

Social protection meets different aspects of the needs of vulnerable groups, such as the economic, health, education, and family relations and ties in the Iraqi society. This is because vulnerable groups have suffered from social and economic influences that have negative implications on the social reality as a whole. Poverty is a case in point, which paved the way to frequent setbacks that have led to social structure instability. Accordingly, the present study aims to examine the role and effect of the Net of Social Protection Program in equally distributing social protection to curb or mitigate any negative consequnces that might happen to the poor segments and vulnerable people, who are succeptible to shocks, such as: the orphans, un

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Feb 21 2021
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Surface Web Merits for SARS-CoV-2 Pandemic in Iraq

Background: Data on SARS-CoV-2 from developing countries is not entirely accurate, demanding incorporating digital epidemiology data on the pandemic.

Objectives: To reconcile non-Bayesian models and artificial intelligence connected with digital and classical (non-digital) epidemiological data on SARS-CoV-2 pandemic in Iraq.


Results:
Baghdad and Sulaymaniyah represented statistical outliers in connection with daily cases and recoveries, and daily deaths, respectively. Multivariate tests and neural networks detected a predictor effect of deaths, recoveries, and daily cases on web searches concerning two search terms, "كورونا" and "Coronavirus" (Pillai's Trace val

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
Scopus (20)
Crossref (9)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Jun 08 2021
Journal Name
مجلة العلوم و التكنولوجية للنشاطات البدنية و الرياضية
The effectiveness of using (7E’s) learning cycle in learning a movement chain on the uneven bars in the artistic gymnastics for women

Abstract The Object of the study aims to identify the effectiveness of using the 7E’s learning cycle to learn movement chains on uneven bars, for this purpose, we used the method SPSS. On a sample composed (20) students on collage of physical education at the university of Baghdad Chosen as two groups experimental and control group (10) student for each group, and for data collection, we used SPSS After collecting the results and having treated them statistically, we conclude the use 7E’s learning cycle has achieved remarkable positive progress, but it has diverged between to methods, On this basis, the study recommended the necessity of applying 7E’s learning cycle strategy in learning the movement chain on uneven bar

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 02 2023
Journal Name
Mathematical Modelling Of Engineering Problems
Traffic Classification of IoT Devices by Utilizing Spike Neural Network Learning Approach

Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas

... Show More
Scopus (3)
Crossref (3)
Scopus Crossref
View Publication
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 16 2021
Journal Name
Translational Vision Science &amp; Technology
Scopus (23)
Crossref (23)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jan 28 2019
Journal Name
Journal Of The College Of Education For Women
Demonstration of Abrogation In Divine Laws At Ibn Barhan

Divine laws are policies that Allah runs his servants, people are different in the accord-ing to the difference of periods .Each period has its kind of conduct and furtune of kindness and their own interest . As every nation has a kind of conduct to be applicable to them even if it will be decay in the rights of the others . For this meaning it would be permitted to meet two prophets in the same period according to the difference of their interest.
The prophecy of Mohamad has been demonstrated and his message was famous according to his miracles and decisive signs. And people from other religions tried to deny his message . As the Christians tried to deny his message by making nobody believe his signs and miracles .
And as the Jews

... Show More
View Publication Preview PDF
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Deep Convolutional Neural Network Architecture to Detect COVID-19 from Chest X-Ray Images

      Today, the world is living in a time of epidemic diseases that spread unnaturally and infect and kill millions of people worldwide. The COVID-19 virus, which is one of the most well-known epidemic diseases currently spreading, has killed more than six million people as of May 2022. The World Health Organization (WHO) declared the 2019 coronavirus disease (COVID-19) after an outbreak of SARS-CoV-2 infection. COVID-19 is a severe and potentially fatal respiratory disease caused by the SARS-CoV-2 virus, which was first noticed at the end of 2019 in Wuhan city. Artificial intelligence plays a meaningful role in analyzing medical images and giving accurate results that serve healthcare workers, especially X-ray images, which are co

... Show More
Scopus (5)
Crossref (6)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
Crossref (1)
Crossref
View Publication Preview PDF