Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing considered tasks despite the limitation in the number of expert demonstrations, which clearly indicate the potential of our model.
Liquefied petroleum gas (LPG), Natural gas (NG) and hydrogen were all used to operate spark ignition internal combustion engine Ricardo E6. A comparison of CO emissions emitted from each case, with emissions emitted from engine fueled with gasoline as a fuel is conducted.
The study was accomplished when engine operated at HUCR for gasoline n(8:1), was compared with its operation at HUCR for each fuel. Compression ratio, equivalence ratio and spark timing were studied at constant speed 1500 rpm.
CO concentrations were little at lean ratios; it appeared to be effected a little with equivalence ratio in this side, at rich side its values became higher, and it appeared to be effected by equivalence ratio highly, the results s
... Show MoreThis study focuses on the biodegradation of oxymatrine insecticide by some soil fungi isolated from four agriculture stations. The results showed that the highest degradation rate 94.66% was recorded by Ulocladium sp. at 10 days and A. niger recorded the lowest degradation rate 45.86%, while at 20 days Ulocladium sp. also showed the highest degradation rate 94.98% and the lowest degradation rate reached to 82.49% with A.niger. The mix (Exerohilum sp.+Ulocladium sp.) recorded the highest degradation rate of oxymatrine insecticide 90.22%, 88.51%, 85.34% at 4, 8 and 12 ppm.The use of mixed isolates enhanced the biodegradation process. There is no study of oxymatrine biodegradation
... Show MoreAbstract
Pneumatic processes sequence (PPS) is used widely in industrial applications. It is common to do a predetermined PPS to achieve a specific larger task within the industrial application like the PPS achieved by the pick and place industrial robot arm. This sequence may require change depending on changing the required task and usually this requires the programmer intervention to change the sequence’ sprogram, which is costly and may take long time. In this research a PLC-based PPS control system is designed and implemented, in which the PPS is programmed by demonstration. The PPS could be changed by demonstrating the new required sequence via the user by following simple series of manual steps without h
... Show MoreSocial protection meets different aspects of the needs of vulnerable groups, such as the economic, health, education, and family relations and ties in the Iraqi society. This is because vulnerable groups have suffered from social and economic influences that have negative implications on the social reality as a whole. Poverty is a case in point, which paved the way to frequent setbacks that have led to social structure instability. Accordingly, the present study aims to examine the role and effect of the Net of Social Protection Program in equally distributing social protection to curb or mitigate any negative consequnces that might happen to the poor segments and vulnerable people, who are succeptible to shocks, such as: the orphans, un
... Show MoreThis study is concerned with organizational learning and its impact on total quality management in the education sector. Organizational learning is a process that provides the educational sector with the ability to adapt and respond rapidly to developments and changes in a better way according to its main dimensions (Mental Models, Personal Mastery, Team Learning, Shared Vision, System Thinking) by adopting the philosophy of Total Quality Management (TQM) in accordance with its basic dimensions (leadership, customer satisfaction, participation of workers, continuous improvement, training and education). The main purpose of this study is to know (the impact of the Senge model of organizational learni
... Show MoreThis study is concerned with organizational learning and its impact on total quality management in the education sector. Organizational learning is a process that provides the educational sector with the ability to adapt and respond rapidly to developments and changes in a better way according to its main dimensions (Mental Models, Personal Mastery, Team Learning, Shared Vision, System Thinking) by adopting the philosophy of Total Quality Management (TQM) in accordance with its basic dimensions (leadership, customer satisfaction, participation of workers, continuous improvement, training and education). The main purpose of this study is to know (the impact of the Senge model of organizational learni
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreAbstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show More