Most recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA) has been proposed.
Via using the MCA associative memory as a new trend, the proposed module goes through two phases: the
first is the training phase (which is executed once during the module installation process) and the second is
the analysis phase. Both phases will be developed through the use of MCA, each according to its process.
The training phase will take place through the learning phase of MCA, while the analysis phase will take
place through the convergence phase of MCA. The use of MCA increases the efficiency of the training
process for the proposed system by using a minimum number of training images that do not exceed 10
training images of the total number of frames in JPG format. The proposed module has been evaluated using
11,825 images that have been extracted from 11 tested videos. As a result, the module can detect the intruder
with an accuracy ratio in the range of 97%–100%. The average training process time for the training videos
was in the range of 10.2 s to 23.2 s.
Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreFace recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show MoreThe art of preventing the detection of hidden information messages is the way that steganography work. Several algorithms have been proposed for steganographic techniques. A major portion of these algorithms is specified for image steganography because the image has a high level of redundancy. This paper proposed an image steganography technique using a dynamic threshold produced by the discrete cosine coefficient. After dividing the green and blue channel of the cover image into 1*3-pixel blocks, check if any bits of green channel block less or equal to threshold then start to store the secret bits in blue channel block, and to increase the security not all bits in the chosen block used to store the secret bits. Firstly, store in the cente
... Show MoreThe global globalization the world is experiencing has enabled international actors—states, international governmental and non-governmental organizations, such as liberation movements, international social movements, and even terrorist organizations—to use cyber power to achieve their goals. Therefore, this study discusses the impact of information power on the domestic environment of the United States.
Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocr
... Show MoreThe subject of the provisions of prayer on the chairs of the important topics in the jurisprudence they fall under the door of the people of excuses, and this section of the important doors in Islamic jurisprudence because it permeates scourge, as prayer is one of the pillars of this religion, and the first thing to be held accountable on the Day of Resurrection prayer If the peace reconciled the rest of his work and spoil corrupted all his work, the street wise was interested in this matter and put him provisions overlooked by many people these days became insulted him and do not pardon him, and do not know the rules and provisions approved by Shara, and the omission of one of these provisions is possible To lead to the invalidity of hi
... Show MoreVoice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show MoreTook apple branches Genuine and Architecture tissue cultured in vitro 3 cm long and planted in the middle of food MS that contains different concentrations of inorganic salts and of Mntmat free growth and incubated Transplanter to study their effect on rooting Aalavra