Preferred Language
Articles
/
bsj-6641
Recurrent Stroke Prediction using Machine Learning Algorithms with Clinical Public Datasets: An Empirical Performance Evaluation
...Show More Authors

Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning algorithms implementation in the recurrent stroke prediction models. This research aims to investigate and compare the performance of machine learning algorithms using recurrent stroke clinical public datasets. In this study, Artificial Neural Network (ANN), Support Vector Machine (SVM) and Bayesian Rule List (BRL) are used and compared their performance in the domain of recurrent stroke prediction model. The result of the empirical experiments shows that ANN scores the highest accuracy at 80.00%, follows by BRL with 75.91% and SVM with 60.45%.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Standards Evaluate The Performance of Emergency Departments In Iraqi Hospitals / Case Study
...Show More Authors

     This study aims to evaluate the performance of emergency departments according to international standards through studying the performance in some of Iraqi public hospitals, where the evaluation performance is considered one of the important topics that take a great deal of officials' attention, especially decision makers in health organizations.

      The researcher has derived the research idea from the importance of work in emergency department in hospitals and to what it provides of medical services and quick and immediate nursing care that help in patients' lifesaving, and it is the mirror that reflects the real image for the hospital

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 16 2026
Journal Name
The Iraqi Journal For Information And Documentation Studies
The role of performance indicators in evaluating the performance of the University of Technology's Central Library
...Show More Authors

University libraries seek to evaluate their performance in order to correct their path and adjust it in the right direction. Therefore, they use (performance indicators), which are a tool used by institutions to evaluate the weaknesses and strengths in their work and the reasons for failure to achieve some goals sometimes. They convert (goals, procedures and actions) into a formula that can be measured mathematically, which contributes to the library determining the gap between its current performance and what those libraries are supposed to be on, clarifying the path that the library is following, controlling the risks that may befall it, and thus enhancing the process of continuous improvement to avoid areas of failure and weakness becaus

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 25 2019
Journal Name
Journal Of Engineering
Comparison of Different DEM Generation Methods based on Open Source Datasets
...Show More Authors

Digital Elevation Model (DEM) is one of the developed techniques for relief representation.  The definition of a DEM construction is the modeling technique of earth surface from existing data. DEM plays a role as one of the fundamental information requirement that has been generally utilized in GIS data structures. The main aim of this research is to present a methodology for assessing DEMs generation methods. The DEMs data will be extracted from open source data e.g. Google Earth. The tested data will be compared with data produced from formal institutions such as General Directorate of Surveying. The study area has been chosen in south of Iraq (Al-Gharraf / Dhi Qar governorate. The methods of DEMs creation are kri

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 25 2019
Journal Name
Journal Of Engineering
Comparison of Different DEM Generation Methods based on Open Source Datasets
...Show More Authors

Digital Elevation Model (DEM) is one of the developed techniques for relief representation.  The definition of a DEM construction is the modeling technique of earth surface from existing data. DEM plays a role as one of the fundamental information requirement that has been generally utilized in GIS data structures. The main aim of this research is to present a methodology for assessing DEMs generation methods. The DEMs data will be extracted from open source data e.g. Google Earth. The tested data will be compared with data produced from formal institutions such as General Directorate of Surveying. The study area has been chosen in south of Iraq (Al-Gharraf / Dhi Qar governorate. The methods of DEMs creation are kriging, IDW (inver

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Feb 28 2025
Journal Name
Energies
Synergizing Machine Learning and Physical Models for Enhanced Gas Production Forecasting: A Comparative Study of Short- and Long-Term Feasibility
...Show More Authors

Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue May 16 2023
Journal Name
Political Sciences Journal
Public Rights and Freedoms in the Constitution of the Sultanate of Oman and Ways to Protect Them
...Show More Authors

What distinguishes human rights issues is their importance to the international community and their importance to democratic political regimes, because they are the axis of any political regime that seeks to achieve a successful democratic path and a stable state. So, countries that are interested in human rights try to enshrine those rights and freedoms in their constitutions and reinforce their concepts in their laws and legislations. Not to mention its involvement in international conventions and treaties concerned with human rights and freedoms, and this is what the Sultanate of Oman has worked on and confirm in the provisions of its 1996 constitution and its amendments

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Fuzzy Wavenet (FWN) classifier for medical images
...Show More Authors

 

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.

  In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.

&n

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Al–bahith Al–a'alami
Skills of Media Marketing of the Public Relations Staff: (University of Baghdad as a Model)
...Show More Authors

Departments and offices of public relations and media in any institution or company is the most important departments that reflect the results of their work negatively or positively on their reputation. This goes beyond the trust and credibility that its internal and external audiences will give it. Where such matter requires the staff, working in these departments and offices, to have communication skills that qualify them to do the role of marketing the communication message. Yet, the communication skills of public relations and media staff vary from person to person depending on the communication position. This skill has two criteria: Achieving the communication goal and the speed in achieving it as a number of skills

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network
...Show More Authors

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Mar 09 2020
Journal Name
Agrosystems, Geosciences & Environment
In-season potato yield prediction with active optical sensors
...Show More Authors

Crop yield prediction is a critical measurement, especially in the time when parts of the world are suffering from farming issues. Yield forecasting gives an alert regarding economic trading, food production monitoring, and global food security. This research was conducted to investigate whether active optical sensors could be utilized for potato (Solanum tuberosum L.) yield prediction at the mid.le of the growing season. Three potato cultivars (Russet Burbank, Superior, and Shepody) were planted and six rates of N (0, 56, 112, 168, 224, and 280 kg ha−1), ammonium sulfate, which was replaced by ammonium nitrate in the 2nd year, were applied on 11 sites in a randomized complete block design, with four replications. Normalized difference ve

... Show More
View Publication