Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning algorithms implementation in the recurrent stroke prediction models. This research aims to investigate and compare the performance of machine learning algorithms using recurrent stroke clinical public datasets. In this study, Artificial Neural Network (ANN), Support Vector Machine (SVM) and Bayesian Rule List (BRL) are used and compared their performance in the domain of recurrent stroke prediction model. The result of the empirical experiments shows that ANN scores the highest accuracy at 80.00%, follows by BRL with 75.91% and SVM with 60.45%.
This experiment presented essential oils by GC/MS, pigment content, and their antioxidant activities as well as sensory evaluation of delight samples. Limonene (66.88%) was the most prevalent yield. The peels of clementine had DPPH and ABT Scavenging activity. All levels of pigment extract had better scores for all sensory values and recorded acceptable scores in terms of appearance, color, aroma, and overall acceptability compared to control delight. Besides, delight samples containing 15 mg astaxanthin pigment extract showed maximum sensory scores compared to other samples and control delight. On the other hand, the product was less acceptable to the panelists compared to control in the case of the addition of 3.75 mg astaxanthin pigme
... Show MoreAbstract
Digital repositories are considered one of the integrated collaborative educational environments that help every researcher interested in developing the education and educational process. The learning resources provided by the repositories are suitable for every researcher, so digital information can be stored and exchanged by ensuring the participation and cooperation of researchers, teachers, and those who are interested, as well as curricula experts, teachers, and students, to exchange each other’s experiences in constantly updating that information as a reason for developing their performance in education. This reveals the importance of the role of educational digital institutions by providing and
... Show MoreThe current study aimed at identifying the impact of each of the full and part time summer enrichment programs on the performance of gifted students. Moreover, it aimed to study the difference between the full and part time programs on the performance of gifted students. The study sample consisted of (115) students from the full time programs and (137) students from the part time programs, they have been randomly selected from the gifted students participating in the full and part time summer enrichment programs. The researcher used the scale of student performance. The results indicated that there were statistically significant differences between the averages of the pre and post applications of the
... Show MoreIn this research, a sensor for chemical solutions was designed and formed using optical fiber-based on a surface Plasmon resonance technology. A single-mode optical fiber with three different diameters (25, 45 and 65) µm was used, respectively. The second layer of the low refractive fiber was replaced by gold, which was electrically deposited at 40 µm thickness. For each of the three types of optical fiber, different saline concentrations (different index of refraction) were used to evaluate the performance of the refractive index sensor (chemical sensor) by measuring its sensitivity and resolutions. The highest values we could get for these two parameters were 240mm/RIU, and 6*10-5 RIU respectively, when the diameter of a
... Show MoreSaudi Arabia’s banking sector plays an important role in the country’s development as it is among the leading sectors in the financial sector. Considering, two main Saudi banks (The National Commercial Bank and Saudi American bank), the present study aims to observe the impact of emotional intelligence on employee performance. The components of emotional intelligence affecting employee performance include self-management, relationship management, self-awareness, and social awareness. A quantitative methodology was applied to analyse the survey results of 300 respondents over the period from 2018 to 2019. The results show that there was a significant positive impact of self-management, self-awareness, and relationship manageme
... Show MoreSodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-201
... Show MoreThis paper deals with the process of evaluating the performance of agricultural activity in Iraq and in particular the agricultural initiative launched by Prime Minister Nuri al-Maliki, during the period from 2008 - 2011. Where it is possible to use criteria or indicators that are fabricated by a statement on the calendar and the results of which may be by comparing planned performance with actual performance or the evaluation of the actual performance of successive periods selected. With an emphasis on the agricultural initiative is subject to the evaluation process by implementing and destinations specialized loan funds its own projects as one of the agricultural lending. With the need to co
... Show MoreA design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings i
... Show MoreIschemic stroke is a significant cause of morbidity and mortality worldwide. Autophagy, a process of intracellular degradation, has been shown to play a crucial role in the pathogenesis of ischemic stroke. Long non-coding RNAs (lncRNAs) have emerged as essential regulators of autophagy in various diseases, including ischemic stroke. Recent studies have identified several lncRNAs that modulate autophagy in ischemic stroke, including MALAT1, MIAT, SNHG12, H19, AC136007. 2, C2dat2, MEG3, KCNQ1OT1, SNHG3, and RMRP. These lncRNAs regulate autophagy by interacting with key proteins involved in the autophagic process, such as Beclin-1, ATG7, and LC3. Understanding the role of lncRNAs in regulating auto
The second leading cause of death and one of the most common causes of disability in the world is stroke. Researchers have found that brain–computer interface (BCI) techniques can result in better stroke patient rehabilitation. This study used the proposed motor imagery (MI) framework to analyze the electroencephalogram (EEG) dataset from eight subjects in order to enhance the MI-based BCI systems for stroke patients. The preprocessing portion of the framework comprises the use of conventional filters and the independent component analysis (ICA) denoising approach. Fractal dimension (FD) and Hurst exponent (Hur) were then calculated as complexity features, and Tsallis entropy (TsEn) and dispersion entropy (DispEn) were assessed as
... Show More