Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning algorithms implementation in the recurrent stroke prediction models. This research aims to investigate and compare the performance of machine learning algorithms using recurrent stroke clinical public datasets. In this study, Artificial Neural Network (ANN), Support Vector Machine (SVM) and Bayesian Rule List (BRL) are used and compared their performance in the domain of recurrent stroke prediction model. The result of the empirical experiments shows that ANN scores the highest accuracy at 80.00%, follows by BRL with 75.91% and SVM with 60.45%.
Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreIt is noted in the title that the paper studies the viewpoint in the novel The Dog and the Long Night by the Iranian novelist Shahranoush Parsi Pour and in the novel Alibaba's Sad Night by the Iraqi novelist Abdulkhaliq Ar-Rikabi. Both are well known novelists, and about whose stories and novels many critical books, MA theses, and Ph.D. dissertations have been written. Also, some of their literary works have won prizes. Here, the researcher shed light on the concept of viewpoint, its types, and its importance in novels in general. This was done along with tackling the two viewpoints in both novels, where similarities and differences were identified. For this end, the researcher has adopted the analytic-descriptive appro
... Show MoreThe study aims to demonstrate the importance of instructional methods in teaching Arabic language as a second language or teaching the Arabic language to non-native speakers. The study is in line with the tremendous development in the field of knowledge, especially in the field of technology and communication, and the emergence of many electronic media in education in general and language teaching in particular. It employs an image in teaching vocabulary and presenting the experience of the Arabic Language Institute for Non-Speakers-King Abdul-Aziz University. The study follows the descriptive approach to solve the problem represented by the lack of interest in the educational methods when teaching Arabic as a second language. Accordingl
... Show MoreThis study concluded detection of Toxoplasma gondii in milk, immunologically by using Elisa and nested PCR)nPCR (based on B1 gene, also to investigate the effect of toxoplasmosis, parity, breed and flock on some milk composition in the Iraqi local and Shami goats in the middle of Iraq. A total of 80 milk samples of the lactating goats were collected. Results of this study showed the prevalence of Toxoplasmosis was 21.25% and 28.75% by Elisa and nPCR respectively without significant differences. The sensitivity of Elisa was a low (30.43%) whereas the specificity was a high (82.45%). The degree of agreement estimated by Kappa coefficient revealed a slight agreement (0.14) between two methods. The results indicated that goats infected
... Show MoreMultiplicative inverse in GF (2 m ) is a complex step in some important application such as Elliptic Curve Cryptography (ECC) and other applications. It operates by multiplying and squaring operation depending on the number of bits (m) in the field GF (2 m ). In this paper, a fast method is suggested to find inversion in GF (2 m ) using FPGA by reducing the number of multiplication operations in the Fermat's Theorem and transferring the squaring into a fast method to find exponentiation to (2 k ). In the proposed algorithm, the multiplicative inverse in GF(2 m ) is achieved by number of multiplications depending on log 2 (m) and each exponentiation is operates in a single clock cycle by generating a reduction matrix for high power of two ex
... Show More