Preferred Language
Articles
/
bsj-6541
Efficient Approach for Solving (2+1) D- Differential Equations
...Show More Authors

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
The Numerical Technique Based on Shifted Jacobi-Gauss-Lobatto Polynomials for Solving Two Dimensional Multi-Space Fractional Bioheat Equations
...Show More Authors

This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Synthesis, Theoretical Study, and Biological Evaluation of Some Metal Ions with Ligand "Methyl -6-[2-(4-Hydroxyphenyl) -2-((1-Phenylethylidene) Amino) Acetamido] -2,2-Dimethyl-5—Oxo-1-Thia-4-Azabicyclo [3.2.0] Heptane-3-Carboxyylate
...Show More Authors

Schiff base (methyl 6-(2- (4-hydroxyphenyl) -2- (1-phenyl ethyl ideneamino) acetamido) -3, 3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylate)Co(II), Ni(II), Cu (II), Zn (II), and Hg(II)] ions were employed to make certain complexes. Metal analysis M percent, elemental chemical analysis (C.H.N.S), and other standard physico-chemical methods were used. Magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identified. Theoretical treatment of the generated complexes in the gas phase was performed using the (hyperchem-8.07) program for molecular mechanics and semi-empirical computations. The (PM3) approach was used to determine the heat of formation (ΔH˚f), binding energy (ΔEb), an

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Computational methods for solving nonlinear ordinary differential equations arising in engineering and applied sciences
...Show More Authors

In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between t

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Of Kufa For Mathematics And Computer
Four Points Block Method with Second Derivative for Solving First Order Ordinary Differential Equations
...Show More Authors

Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
Scopus (13)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator
...Show More Authors

The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Numerical Approach of Linear Volterra Integro-Differential Equations Using Generalized Spline Functions
...Show More Authors

This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples

View Publication Preview PDF
Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Modified Iterative Method for Solving Sine - Gordon Equations
...Show More Authors

       The basic goal of this research is to utilize an analytical method which is called the Modified Iterative Method in order to gain an approximate analytic solution to the Sine-Gordon equation. The suggested method is the amalgamation of the iterative method and a well-known technique, namely the Adomian decomposition method. A method minimizes the computational size, averts round-off errors, transformation and linearization, or takes some restrictive assumptions. Several examples are chosen to show the importance and effectiveness of the proposed method. In addition, a modified iterative method gives faster and easier solutions than other methods. These solutions are accurate and in agreement with the series

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Aug 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Sub–Nyquist Frequency Efficient Audio Compression
...Show More Authors

This paper presents the application of a framework of fast and efficient compressive sampling based on the concept of random sampling of sparse Audio signal. It provides four important features. (i) It is universal with a variety of sparse signals. (ii) The number of measurements required for exact reconstruction is nearly optimal and much less then the sampling frequency and below the Nyquist frequency. (iii) It has very low complexity and fast computation. (iv) It is developed on the provable mathematical model from which we are able to quantify trade-offs among streaming capability, computation/memory requirement and quality of reconstruction of the audio signal. Compressed sensing CS is an attractive compression scheme due to its uni

... Show More
View Publication Preview PDF