In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
This paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.
in this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach
This study describes the preparation of new series of tetra-dentate N2O2 dinuclear complexes (Cr3+, Co2+, Cu2+) of the Schiff base derived from condensation of 1-Hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. The structures of the ligands were identified using IR, UV-Vis , mass, elemental analysis and 1H-NMR techniques. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, theromgravimatric analysis (TGA) and metal analysis by atomic absorption. From stoichiometry of metal to ligand and all measurements show a octahedral geometry proposed for all
... Show More
Abstract
The current research aims to identify the impact of triangular bridging strategy in the acquisition of sociology of fourth-stage students. To achieve the research objective, the following null hypotheses were adopted: there are no statistically significant differences at a significance level (0, 05) between the average grades of the experimental group students who studied the triangular bridging strategy in acquiring concepts of sociology and average grades of the control group. The researcher has selected the fourth-stage students from Alexandronah School for girls that s related to the Directorate General of Baghdad the sample consisted of (87) students at litera
... Show MoreIn this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show MoreThis paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.