The present study is considered the first on this sector of the Tigris River after 2003. It is designed for two aims, the first is to demonstrate the seasonal variations in physicochemical parameters of Tharthar-Tigris Canal and Tigris River; the second is to explain the possible effects of canal on some environmental properties in the Tigris River. Water samples were being collected monthly. Six sampling sites were selected, two on Tharthar Canal and four along the Tigris River, one before the confluence as a control site and the others downstream the confluence with the canal. For a period from January to December 2020, nineteen physicochemical parameters were investigated including air and water temperature, turbidity, electrical conductivity, salinity dissolved oxygen, percent oxygen saturation, biological oxygen demand, pH, total hardness, calcium, magnesium, sulphate, total dissolved solids, total suspended solids, total alkalinity, bicarbonate, nitrate and phosphate. The results showed that air and water temperatures were close in both Tigris and canal. The waters were well aerated, slightly alkaline and over saturation was recorded several times, while biological oxygen demand values did not exceed 5 mg/L along study period. The high values of conductivity, salinity, total dissolved solids, total hardness, calcium and sulphate ions in Tharthar water increased in the Tigris River below the confluence. Whereas, the low values of turbidity, TSS, total alkalinity and bicarbonate in the arm diluted in the main river. It has been concluded that Tharthar Canal affected the Tigris River by either increasing or diluting of the Tigris chemical components.
A new tridentate ligand has been synthesized derived from phenyl(pyridin-3-yl)methanone. Three coordinated metal complexes were prepared by complexation of the new ligand with Cu(II), Ni(II) and Zn(II) metal salts. The new Schiff base “benzyl -2-[phenyl(pyridin-3-yl)methylidene]hydrazinecarbodithioate” and the new metal complexes were characterized using various physico-chemical and spectroscopic techniques. From the analysis results, the expected structure to the metal complexes are octahedral in geometry for Cu(II) complex, square planner for Ni(II) and tetrahedral for Zn(II) complex. The new compounds are expected to show strong bioactivity against bacteria and cancer cells.
Breast carcinoma is one of the greatest popular neoplasms in females. It is a major reason of demise in the world, and it is the first cancer in ranking diagnosed in Iraqi women. This study aimed to determine aminoacyltRAN-synthetase complex interacting multifunctional protein 1 and liver enzymes levels in Iraqi females with stage II breast malignance, and study the effect of chemotherapy (after surgery) on these markers. This study included 50 females patients with stage II breast malignance (before and after surgery and second dose of chemotherapy) attending the Oncology Teaching Hospital in Medical City/ Baghdad, in addition to 20 persons as controller group were chosen without any chronic diseases. Their ages ranged from (30-55) years.
... Show MoreThe effects of nutrients and physical conditions on phytase production were investigated with a recently isolated strain of Aspergillus tubingensis SKA under solid state fermentation on wheat bran. The nutrient factors investigated included carbon source, nitrogen source, phosphate source and concentration, metal ions (salts) and the physical parameters investigated included inoculum size, pH, temperature and fermentation duration. Our investigations revealed that optimal productivity of phytase was achieved using wheat bran supplemented with: 1.5% glucose. 0.5% (NH4)2SO4, 0.1% sodium phytate. Additionally, optimal physical conditions were 1 × 105 spore/g substrate, initial pH of 5.0, temperature of fermentation 30˚C and fermentation dura
... Show MoreBackground: Multiple myeloma (MM) is characterized by clonal proliferation of malignant plasma cells within the bone marrow. In most patients, monoclonal immunoglobulin heavy chains or light chains are produced and are associated with organ dysfunction. The growth factor B-cell activating factor (BAFF) plays an important role in the pathogenesis of multiple myeloma due to its ability to promote B-cell survival, expansion, and differentiation. Objective: to measure the circulatory level of B-cell activating factor in multiple myeloma patients in relapsed and remission states and explore its possible correlations with the clinical staging, β2-microglobulin, and interleukin-6. Methods: This cross-sectional study was performed on 60
... Show MoreThis study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From
... Show MoreCombining different treatment strategies successively or simultaneously has become recommended to achieve high purification standards for the treated discharged water. The current work focused on combining electrocoagulation, ion-exchange, and ultrasonication treatment approaches for the simultaneous removal of copper, nickel, and zinc ions from water. The removal of the three studied ions was significantly enhanced by increasing the power density (4–10 mA/cm2) and NaCl salt concentration (0.5–1.5 g/L) at a natural solution pH. The simultaneous removal of these metal ions at 4 mA/cm2 and 1 g NaCl/L was highly improved by introducing 1 g/L of mordenite zeolite as an ion-exchanger. A remarkable removal of heavy metals was reported
... Show More