Coagulation is the most important process in drinking water treatment. Alum coagulant increases the aluminum residuals, which have been linked in many studies to Alzheimer's disease. Therefore, it is very important to use it with the very optimal dose. In this paper, four sets of experiments were done to determine the relationship between raw water characteristics: turbidity, pH, alkalinity, temperature, and optimum doses of alum [ .14 O] to form a mathematical equation that could replace the need for jar test experiments. The experiments were performed under different conditions and under different seasonal circumstances. The optimal dose in every set was determined, and used to build a gene expression model (GEP). The models were constructed using data of the jar test experiments: turbidity, pH, alkalinity, and temperature, to predict the coagulant dose. The best GEP model gave very good results with a correlation coefficient (0.91) and a root mean square error of 1.8. Multi linear regression was used to be compared with the GEP results; it could not give good results due to the complex nonlinear relation of the process. Another round of experiments was done with high initial turbidity like the values that comes to the plant during floods and heavy rain. To give an equation for these extreme values, with studying the use of starch as a coagulant aid, the best GEP gave good results with a correlation coefficient of 0.92 and RMSE 5.1
Asmari is the main productive reservoir in Abu Ghirab oilfield in the south-east part of Iraq. It has history production extends from 1976 up to now with several close periods. Recently, the reservoir suffers some problems in production, which are abstracted as water production rising with oil production declining in most wells. The water problem type of the field and wells is identified by using Chan's diagnostic plots (water oil ratio (WOR) and derivative water oil ratio (WOR') against time). The analytical results show that water problem is caused by the channeling due to high permeability zones, high water saturation zones, and faults or fracturing. The numerical approach is also used to study the water movement inside the reser
... Show MoreThe chlorine concentration variation in Baghdad water networks was studied. The
chlorine data were collected from Mayoralty of Baghdad and Ministry of Environment
(MOE) for the networks for both sides of the city Karkh and Rasafa for (2008-2009). The
study of these data indicates that there are no systematic testing program .Classified GIS
maps showed that the areas far from the treatment plants have almost always low
chlorine concentration .This indicates that the problem of the low chlorine concentration
in the far areas is due to cracks of pipe along the conveyance path ,as expected. The area's
most frequently have low concentration are Al-sadir,Al-Kadhimya, and Al-Amiria . It
was found also that the chlorine c
The concerns about water contaminants affect most developing countries bypassing rivers over them. The issue is challenging to introduce water quality within the allowed limits for drinking, industrial and agricultural purposes. In the present study, physical-chemical parameters measurements of water samples taken from eleven stations were collected during six months in 2020 through flow path along the whole length of Tigris River inside AL Kut city (center of Wassit government) were investigated for six parameters are total hardness TH, hydrogen ion pH, biological oxygen demand BOD5, total dissolved solids TDS, nitrate NO3, and sulfate SO4. The water quality analysis results were compared with the maximum allowable limit concentrat
... Show MoreThin films of Magnetite have been deposited on Galvanized Steel (G-S) alloy using RF-reactive magnetron sputtering technique and protection efficiency of the corrosion of G-S. A Three-Electrodes Cell was used in saline water (3.5 % NaCl) solution at different temperatures (298, 308, 318 & 328K) using potentiostatic techniques with. Electrochemical Impedance Spectroscopy (EIS) and fitting impedance data via Frequency Response Analysis (FRA) were applied to G-S alloy with Fe3O4 and tested in 3.5 % NaCl solution at 298K.Results taken from Nyquist and Bode plots were analyzed using software provided with the instrument. The results obtained show that the rate of corrosion of G.S alloy increased with increasing the temperatures from 298 t
... Show MoreGroundwater quality deterioration due to anthropogenic natural activities and its immense utilization in various sectors is considered a great concern. The aim of this study is to determine the groundwater quality parameters at various sources in and around Dhaka city and compare them with Bangladesh drinking water standards. In this study, six groundwater quality parameters (pH, DO, COD, TS, TDS, and arsenic) and ten groundwater samples are analyzed to determine the water quality. The collected samples have maximum and minimum pH values of 6.9 and 6.4, respectively. Maximum and minimum DO values are 0.3 and 0.1 mg/L, respectively. The arsenic concentration is 0 mg/L for all collected groundwater samples. The maximum and minimum COD
... Show MoreCO2 Laser (10600nm) is the recent method in the management of challenging skin scar resulting from trauma, burn and surgical wound. The aim of this study was to evaluate the efficacy & safety of fractional CO2 laser (10600nm) in treatment of skin scar. Materials and Methods:Twenty patients with different types of scars treated with fractional CO2 (10600nm) laser, (10 patients) were given additional intralesional Triamcinolone. Results: All of the twenty patients included in this study showed some sort of improvements in scar texture, height and pliability and all of the ten patients who received intralesional Triamcinolone after laser show complete satisfaction. Conclusion:Fractional CO2 (10600nm) laser can be used as alternative, ef
... Show MoreKE Sharquie, AA Noaimi, EA Al-Janabi…, Journal of Cosmetics, Dermatological Sciences and Applications, 2013 - Cited by 13
Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
Two types of adsorbents were used to treat oily wastewater, activated carbon and zeolite. The removal efficiencies of these materials were compared to each other. The results showed that activated carbon performed some better properties in removal of oil. The experimental methods which were employed in this investigation included batch and column studies. The former was used to evaluate the rate and equilibrium of carbon and zeolie adsorption, while the latter was used to determine treatment efficiencies and performance characteristics. Expanded bed adsorber was constructed in the column studies. In this study, the adsorption behavior of vegetable oil (corn oil) onto activated carbon and zeolite was examined as a function of the concentr
... Show MoreThe present work aims to study the treatment of oily wastewater by means of forward osmosis membrane bioreactor process. Side stream (external) configuration and submerged (internal) configuration of osmotic membrane bioreactor were performed and investigated. The experimental work for each configuration was carried out continuously over 21 days. The flux behavior of forward osmosis membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl as the draw solution and CTA as FO membrane. The effect of mixed liquor suspended solids (MLSS) concentration and TDS accumulation of bioreactor on water flux and membrane fouling behaviors was detected. The accumulation and rejection of nutrients in the bioreactor (Nitrate, COD,
... Show More