The Wang-Ball polynomials operational matrices of the derivatives are used in this study to solve singular perturbed second-order differential equations (SPSODEs) with boundary conditions. Using the matrix of Wang-Ball polynomials, the main singular perturbation problem is converted into linear algebraic equation systems. The coefficients of the required approximate solution are obtained from the solution of this system. The residual correction approach was also used to improve an error, and the results were compared to other reported numerical methods. Several examples are used to illustrate both the reliability and usefulness of the Wang-Ball operational matrices. The Wang Ball approach has the ability to improve the outcomes by minimizing the degree of error between approximate and exact solutions. The Wang-Ball series has shown its usefulness in solving any real-life scenario model as first- or second-order differential equations (DEs).
The purpose of this study is to investigate learners' listening comprehension problems with Englishlectures. The study was guided by research question (What are the listening comprehension problems learners have with lectures in English).Furthermore; the main significant goal were declared through conducting this study, as well as providing some procedures of distribution the questionnaire of the study.Moreover, it presents several definitions of listening. This study definitely depends on questionnaire instrument to gathering the required data. The participants of the study were 30 learners completed their secondary school and joined at the college. Based on the findings among the five factors (text, speaker, task, environment, and list
... Show MoreThe fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.
Objective: The study objectives are to identify the problems which confront renal transplant recipients
( RTRS).
Methodology: A descriptive study was carried out at two Teaching Hospitals with kidney transplant
centers. Surgical specialties and Al-Karama outpatients,
clinics for ( RTRS) ,and three Teaching
Hospitals; Medical city, Al-Karama and Al-Yermok which were responsible for immunosuppressive
drugs distribution .Starting from October ,1st
2006 to the end of July 2007.To achieve the objectives
of study, a non-probability (purposive) sample of 150 ( RTRS) who were attending to the outpatient
clinic of the above listed hospital were selected according to the criteria of the study sample .
The finalized q
There Are Many Communities Suffering Of Unemployment Due To Has Great Social And Economic Impact, As Well As The Psychological Effects Devastating And Serious And That May Threaten States With Collapse And Leading Human Displacement And Loss And Crime, And Often Derive Unemployed People To Practice Bad Habits Such As Gambling, Alcohol And Drug Abuse To Escape From Their Reality To Their Concerns And Problems.
It Should Be Noted, That The Largest Percentage Of Unemployment In Developing Societies Represented By The Educated Class Of University Graduates, And This Is Something Painful.
The Unemployed Know That (Each Capable Of Working And Who Want To Look For And Accept Prevailing Bricks) Is Th
... Show MoreThis paper is concerned with the numerical blow-up solutions of semi-linear heat equations, where the nonlinear terms are of power type functions, with zero Dirichlet boundary conditions. We use explicit linear and implicit Euler finite difference schemes with a special time-steps formula to compute the blow-up solutions, and to estimate the blow-up times for three numerical experiments. Moreover, we calculate the error bounds and the numerical order of convergence arise from using these methods. Finally, we carry out the numerical simulations to the discrete graphs obtained from using these methods to support the numerical results and to confirm some known blow-up properties for the studied problems.
Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
Three-dimensional cavity was investigated numerical in the current study filled with porous medium from a saturated fluid. The problem configuration consists of two insulated bottom and right wall and left vertical wall maintained at constant temperatures at variable locations, using two discretized heaters. The porous cavity fluid motion was represented by the momentum equation generalized model. The present investigation thermophysical parameters included the local thermal equilibrium condition. The isotherms and streamlines was used to examine energy transport and momentum. The meaning of changing parameters on the established average Nusselt number, temperature and velocity distribution are highlighted and discussed.
Artificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit