Each Intensity Modulated Radiation Therapy (IMRT) plan needs to be tested and verified before any treatment to check its quality. Octavius 4D-1500 phantom detector is a modern and qualified device for quality assurance procedure. This study aims to compare the common dosimetric criteria 3%/3 mm with 2%/2 mm for H&N plans for the IMRT technique. Twenty-five patients with head and neck (H&N) tumor were with 6MV x-ray photon beam using Monaco 5.1 treatment planning software and exported to Elekta synergy linear accelerator then tested for pretreatment verification study using Octavius 4D-1500 phantom detector. The difference between planned and measured dose were assessed by using local and global gamma index (GI) analysis method at threshold 10%. The DD/DTA criteria are performed with 3%/3 mm and 2%/2 mm. A significant difference is shown between the measured and calculated point dose for the treatment plans. A comparison made between the gamma passing rate between the 2%/2 mm and 3%/3 mm shows a significant difference for local and global which shows that the 2%/2 mm are more sensitive to dose variation than 3%/3 mm. The total monitor unit (MU) shows a negative linear relationship with both criteria and %GP types. A significant correlation is shown between the total MU and global %GP at 2%/2 mm criterion. The conclusion of the study indicates that 2%/2 mm criterion is more sensitive to the dose distribution changes than the 3%/3 mm. The total number of monitor units should be taken into consideration during the planning of H&N tumors using the IMRT plans.
Cloud Computing is a mass platform to serve high volume data from multi-devices and numerous technologies. Cloud tenants have a high demand to access their data faster without any disruptions. Therefore, cloud providers are struggling to ensure every individual data is secured and always accessible. Hence, an appropriate replication strategy capable of selecting essential data is required in cloud replication environments as the solution. This paper proposed a Crucial File Selection Strategy (CFSS) to address poor response time in a cloud replication environment. A cloud simulator called CloudSim is used to conduct the necessary experiments, and results are presented to evidence the enhancement on replication performance. The obtained an
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreAsset management involves efficient planning of economic and technical performance characteristics of infrastructure systems. Managing a sewer network requires various types of activities so the network can be able to achieve a certain level of performance. During the lifetime of the network various components will start to deteriorate leading to bad performance and can damage the infrastructure. The main objective of this research is to develop deterioration models to provide an assessment tool for determining the serviceability of the sewer networks in Baghdad city the Zeppelin line was selected as a case study, as well as to give top management authorities the appropriate decision making. Different modeling techniques
... Show MoreIn this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
This study represents an optical biosensor for early skin cancer detection using cysteine-cupped CdSe/CdS Quantum Dots (QDs). The study optimizes QD synthesis, surface, optical functionalization, and bioconjugation to enhance specificity and sensitivity for early skin cancer cell detection. The research provides insights into QD interactions with skin cancer biomarkers, demonstrating high-contrast, precise cellular imaging. Cysteine-capped CdSe/CdS absorption spectra reveal characteristic peaks for undamaged DNA, while spectral shifts indicate structural changes in skin-cancer-damaged DNA. Additionally, fluorescence spectra show sharp peaks for undamaged DNA and notable shifts and intensity variations when interacting with skin cancer. This
... Show MoreOptimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show Morethis paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical