Each Intensity Modulated Radiation Therapy (IMRT) plan needs to be tested and verified before any treatment to check its quality. Octavius 4D-1500 phantom detector is a modern and qualified device for quality assurance procedure. This study aims to compare the common dosimetric criteria 3%/3 mm with 2%/2 mm for H&N plans for the IMRT technique. Twenty-five patients with head and neck (H&N) tumor were with 6MV x-ray photon beam using Monaco 5.1 treatment planning software and exported to Elekta synergy linear accelerator then tested for pretreatment verification study using Octavius 4D-1500 phantom detector. The difference between planned and measured dose were assessed by using local and global gamma index (GI) analysis method at threshold 10%. The DD/DTA criteria are performed with 3%/3 mm and 2%/2 mm. A significant difference is shown between the measured and calculated point dose for the treatment plans. A comparison made between the gamma passing rate between the 2%/2 mm and 3%/3 mm shows a significant difference for local and global which shows that the 2%/2 mm are more sensitive to dose variation than 3%/3 mm. The total monitor unit (MU) shows a negative linear relationship with both criteria and %GP types. A significant correlation is shown between the total MU and global %GP at 2%/2 mm criterion. The conclusion of the study indicates that 2%/2 mm criterion is more sensitive to the dose distribution changes than the 3%/3 mm. The total number of monitor units should be taken into consideration during the planning of H&N tumors using the IMRT plans.
|
Ground Penetrating Radar (GPR) is a nondestructive geophysical technique that uses electromagnetic waves to evaluate subsurface information. A GPR unit emits a short pulse of electromagnetic energy and is able to determine the presence or absence of a target by examining the reflected energy from that pulse. GPR is geophysical approach that use band of the radio spectrum. In this research the function of GPR has been summarized as survey different buried objects such as (Iron, Plastic(PVC), Aluminum) in specified depth about (0.5m) using antenna of 250 MHZ, the response of the each object can be recognized as its shapes, this recognition have been performed using image processi |
Thirty local fungal isolates according to Aspergillus niger were screened for Inulinase production on synthetic solid medium depending on inulin hydrolysis appear as clear zone around fungal colony. Semi-quantitative screening was performed to select the most efficient isolate for inulinase production. the most efficient isolate was AN20. The optimum condition for enzyme production from A. niger isolate was determined by busing a medium composed of sugar cane moisten with corn steep liquor 5;5 (v/w) at initial pH 5.0 for 96 hours at 30 0C . Enzyme productivity was tested for each of the yeast Kluyveromyces marxianus, the fungus A. niger AN20 and for a mixed culture of A. niger and K. marxianus. The productivity of A. niger gave the highest
... Show MoreEffective decision-making process is the basis for successfully solving any engineering problem. Many decisions taken in the construction projects differ in their nature due to the complex nature of the construction projects. One of the most crucial decisions that might result in numerous issues over the course of a construction project is the selection of the contractor. This study aims to use the ordinal priority approach (OPA) for the contractor selection process in the construction industry. The proposed model involves two computer programs; the first of these will be used to evaluate the decision-makers/experts in the construction projects, while the second will be used to formul
Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreThe flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha
... Show More