Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or living in it to assist people in recognizing between a secured and an unsecured environment. Geo-location, combined with new approaches and techniques, can be extremely useful in crime investigation. The aim is focused on comparative study between three supervised learning algorithms. Where learning used data sets to train and test it to get desired results on them. Various machine learning algorithms on the dataset of Boston city crime are Decision Tree, Naïve Bayes and Logistic Regression classifiers have been used here to predict the type of crime that happens in the area. The outputs of these methods are compared to each other to find the one model best fits this type of data with the best performance. From the results obtained, the Decision Tree demonstrated the highest result compared to Naïve Bayes and Logistic Regression.
دُرِست العوامل المؤثرة في عدد ساعات تجهيز الكهرباء في مدينة بغداد، وتكونت عينة الدراسة من (365) مشاهدة يومية لعام 2018، وتمثلت بستة متغيرات استعملت في الدراسة. كان الهدف الرئيس هو دراسة العلاقة بين هذه المتغيرات، وتقدير تأثيرات المتغيرات التنبؤية في المتغير التابع (عدد ساعات تجهيز الكهرباء في مدينة بغداد). ولتحقيق ذلك استعملت نمذجة المعادلات الهيكلية/ تحليل المسار وبرنامج AMOS
... Show MoreStenography is the art of hiding the very presence of communication by embedding secret message into innocuous looking cover document, such as digital image, videos, sound files, and other computer files that contain perceptually irrelevant or redundant information as covers or carriers to hide secret messages.
In this paper, a new Least Significant Bit (LSB) nonsequential embedding technique in wave audio files is introduced. To support the immunity of proposed hiding system, and in order to recover some weak aspect inherent with the pure implementation of stego-systems, some auxiliary processes were suggested and investigated including the use of hidden text jumping process and stream ciphering algorithm. Besides, the suggested
... Show MoreThe aim of this paper is to present a new methodology to find the private key of RSA. A new initial value which is generated from a new equation is selected to speed up the process. In fact, after this value is found, brute force attack is chosen to discover the private key. In addition, for a proposed equation, the multiplier of Euler totient function to find both of the public key and the private key is assigned as 1. Then, it implies that an equation that estimates a new initial value is suitable for the small multiplier. The experimental results show that if all prime factors of the modulus are assigned larger than 3 and the multiplier is 1, the distance between an initial value and the private key
... Show MoreWill address this research interaction and coordination between fiscal and monetary policies and the impact of this interaction and coordination on economic stability and growth، and how the financial implications of monetary policy may stimulate action monetary policy and treatment side effects and the nature of responsiveness and bounce between procedures both two policies and their impact on the balance of overall economic and explained in the folds of searchjustifications coordination and the extent necessary in order to address the imbalances in economic activity through twinning actions of monetary and fiscal، has embodied this coordination and interaction between policies and their impact m
... Show MoreSince the beginning of the last century, the competition for water resources has intensified dramatically, especially between countries that have no agreements in place for water resources that they share. Such is the situation with the Euphrates River which flows through three countries (Turkey, Syria, and Iraq) and represents the main water resource for these countries. Therefore, the comprehensive hydrologic investigation needed to derive optimal operations requires reliable forecasts. This study aims to analysis and create a forecasting model for data generation from Turkey perspective by using the recorded inflow data of Ataturk reservoir for the period (Oct. 1961 - Sep. 2009). Based on 49 years of real inflow data
... Show Moretock markets changed up and down during time. Some companies’ affect others due to dependency on each other . In this work, the network model of the stock market is discribed as a complete weighted graph. This paper aims to investigate the Iraqi stock markets using graph theory tools. The vertices of this graph correspond to the Iraqi markets companies, and the weights of the edges are set ulrametric distance of minimum spanning tree.
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show More