Preferred Language
Articles
/
bsj-6310
A Crime Data Analysis of Prediction Based on Classification Approaches
...Show More Authors

Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or living in it to assist people in recognizing between a secured and an unsecured environment.  Geo-location, combined with new approaches and techniques, can be extremely useful in crime investigation. The aim is focused on comparative study between three supervised learning algorithms. Where learning used data sets to train and test it to get desired results on them. Various machine learning algorithms on the dataset of Boston city crime are Decision Tree, Naïve Bayes and Logistic Regression classifiers have been used here to predict the type of crime that happens in the area. The outputs of these methods are compared to each other to find the one model best fits this type of data with the best performance. From the results obtained, the Decision Tree demonstrated the highest result compared to Naïve Bayes and Logistic Regression.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Satellite Images Classification in Rural Areas Based on Fractal Dimension
...Show More Authors

Fractal geometry is receiving increase attention as a quantitative and qualitative model for natural phenomena description, which can establish an active classification technique when applied on satellite images. In this paper, a satellite image is used which was taken by Quick Bird that contains different visible classes. After pre-processing, this image passes through two stages: segmentation and classification. The segmentation carried out by hybrid two methods used to produce effective results; the two methods are Quadtree method that operated inside Horizontal-Vertical method. The hybrid method is segmented the image into two rectangular blocks, either horizontally or vertically depending on spectral uniformity crit

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Combining Several Substitution Cipher Algorithms using Circular Queue Data Structure
...Show More Authors

With the revolutionized expansion of the Internet, worldwide information increases the application of communication technology, and the rapid growth of significant data volume boosts the requirement to accomplish secure, robust, and confident techniques using various effective algorithms. Lots of algorithms and techniques are available for data security.  This paper presents a cryptosystem that combines several Substitution Cipher Algorithms along with the Circular queue data structure. The two different substitution techniques are; Homophonic Substitution Cipher and Polyalphabetic Substitution Cipher in which they merged in a single circular queue with four different keys for each of them, which produces eight different outputs for

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Sep 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
PREDICTION OF FINITE CONCENTRATIONBEHAVIOR FROM INFINITE DILUTION EGUILIBRIUM DATA
...Show More Authors

Experimental activity coefficients at infinite dilution are particularly useful for calculating the parameters needed in an expression for the excess Gibbs energy. If reliable values of γ∞1 and γ∞2 are available, either from direct experiment or from a correlation, it is possible to predict the composition of the azeotrope and vapor-liquid equilibrium over the entire range of composition. These can be used to evaluate two adjustable constants in any desired expression for G E. In this study MOSCED model and SPACE model are two different methods were used to calculate γ∞1 and γ∞2

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of The College Of Languages (jcl)
Negation marker in Standard Persian : a typological analysis based on Givon’s functional model: عامل نفی در زبان فارسی معیار: بررسی رده‌شناختی براساس مدل نقش‌ گرایی گیون
...Show More Authors

 Abstract:

Typological analysis about  the negation marker  in different languages is one of the fields of research that has attracted much attention.  In Persian language, this constituent has been analysed from different aspects. This study aimed to analyse  different aspects of negation marker  in  the adjectives,  the noun phrases and  the verb phrases based on typological analysis.  Many studies have been revealed that  the negation in adjectives has shown lexically and morphologically. In the noun phrases, /hich/  has used as a negative marker necessarily marking the verb phrase as negative too. In the verb phrases, negation occurs morphologically by the addition of the prefix /n

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Proposing Robust LAD-Atan Penalty of Regression Model Estimation for High Dimensional Data
...Show More Authors

         The issue of penalized regression model has received considerable critical attention to variable selection. It plays an essential role in dealing with high dimensional data. Arctangent denoted by the Atan penalty has been used in both estimation and variable selection as an efficient method recently. However, the Atan penalty is very sensitive to outliers in response to variables or heavy-tailed error distribution. While the least absolute deviation is a good method to get robustness in regression estimation. The specific objective of this research is to propose a robust Atan estimator from combining these two ideas at once. Simulation experiments and real data applications show that the p

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Aug 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Efficiency Measurement Model for Postgraduate Programs and Undergraduate Programs by Using Data Envelopment Analysis
...Show More Authors

Measuring the efficiency of postgraduate and undergraduate programs is one of the essential elements in educational process. In this study, colleges of Baghdad University and data for the academic year (2011-2012) have been chosen to measure the relative efficiencies of postgraduate and undergraduate programs in terms of their inputs and outputs. A relevant method to conduct the analysis of this data is Data Envelopment Analysis (DEA). The effect of academic staff to the number of enrolled and alumni students to the postgraduate and undergraduate programs are the main focus of the study.

 

View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Compression-based Data Reduction Technique for IoT Sensor Networks
...Show More Authors

Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the

... Show More
View Publication Preview PDF
Scopus (41)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Sun Jul 17 2022
Journal Name
Al–bahith Al–a'alami
Features of news coverage during Covid-19 crisis: Content analysis on a sample of global news accounts on Twitter
...Show More Authors

This study aims to analyze the messages of a number of global news outlets on Twitter. In order to clarify the news outlets tactics of reporting, the subjects and focus during the crisis related to the spread of the Covid-19 virus. The study sample was chosen in a deliberate manner to provide descriptive results. Three news sites were selected: two of the most followed, professional and famous international news sites: New York Times and the Guardian, and one Arab news site: Al-Arabiya channel.

A total of 18,085 tweets were analyzed for the three accounts during the period from (1/3/2020) to (8/4/2020). A content analysis form was used to analyze the content of the news coverage.   The results indicate an increase in th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 21 2021
Journal Name
Earth Resources And Environmental Remote Sensing/gis Applications Xii
Investigating the old city of Babylon: tracing buried structural history based on photogrammetry and integrated approaches
...Show More Authors

View Publication
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Advance Science And Technology
MR Images Classification of Alzheimer's Disease Based on Deep Belief Network Method
...Show More Authors

Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the

... Show More