Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or living in it to assist people in recognizing between a secured and an unsecured environment. Geo-location, combined with new approaches and techniques, can be extremely useful in crime investigation. The aim is focused on comparative study between three supervised learning algorithms. Where learning used data sets to train and test it to get desired results on them. Various machine learning algorithms on the dataset of Boston city crime are Decision Tree, Naïve Bayes and Logistic Regression classifiers have been used here to predict the type of crime that happens in the area. The outputs of these methods are compared to each other to find the one model best fits this type of data with the best performance. From the results obtained, the Decision Tree demonstrated the highest result compared to Naïve Bayes and Logistic Regression.
This study aims to measure and analyze the direct and indirect effects of the financial variables, namely (public spending, public revenues, internal debt, and external debt), on the non-oil productive sectors with and without bank credit as an intermediate variable, using quarterly data for the period (2004Q1–2021Q4), converted using Eviews 12. To measure the objective of the study, the path analysis method was used using IBM SPSS-AMOS. The study concluded that the direct and indirect effects of financial variables have a weak role in directing bank credit towards the productive sectors in Iraq, which amounted to (0.18), as a result of market risks or unstable expectations in the economy. In addition to the weak credit ratings of borr
... Show MoreThe present study involves experimental analysis of the modified Closed Wet Cooling Tower (CWCT) based on first and second law of thermodynamics, to gain a deeper knowledge in this important field of engineering in Iraq. For this purpose, a prototype of CWCT optimized by added packing under a heat exchanger was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the towers thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of air measured at intermediate points of the heat exchanger and packing. Exergy of water and air were calculated by applying the exergy
... Show MoreThis study aimed to investigate the role of Big Data in forecasting corporate bankruptcy and that is through a field analysis in the Saudi business environment, to test that relationship. The study found: that Big Data is a recently used variable in the business context and has multiple accounting effects and benefits. Among the benefits is forecasting and disclosing corporate financial failures and bankruptcies, which is based on three main elements for reporting and disclosing that, these elements are the firms’ internal control system, the external auditing, and financial analysts' forecasts. The study recommends: Since the greatest risk of Big Data is the slow adaptation of accountants and auditors to these technologies, wh
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show More