Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and the absolute mean square error were also used to measure the accuracy of the estimation for methods used. The important result obtained in this paper is that the optimal neural network was the Backpropagation (BP) and Recurrent neural networks (RNN) to solve time series, whether linear, semilinear, or non-linear. Besides, the result proved that the inefficiency and inaccuracy (failure) of RBF in solving nonlinear time series. However, RBF shows good efficiency in the case of linear or semi-linear time series only. It overcomes the problem of local minimum. The results showed improvements in the modern methods for time series forecasting.
There is no doubt that Jane Austen is one of the most studied authors of the late 18th and early 19th centuries. Her female characters have been extensively studied and they seem to have aroused much interest as manifestations of the conduct of their time. Her heroines have realized that there were many mistakes in the rules of conduct that controlled and restricted their behaviors. Thus, they have found no fault in correcting these mistakes, by behaving naturally without acting. Elizabeth Bennet the heroine of Pride and Prejudice and Marianne Dashwood of Sense and Sensibility are the chosen examples of that kind of women.
Conventional concretes are nearly unbendable, and just 0.1 percent of strain potential makes them incredibly brittle and stiff. This absence of bendability is a significant cause of strain failure and has been a guiding force in the production of an elegant substance, bendable concrete, also known as engineered cement composites, abbreviated as ECC. This type of concrete is capable of displaying dramatically increased flexibility. ECC is reinforced with micromechanical polymer fibers. ECC usually uses a 2 percent volume of small, disconnected fibers. Thus, bendable concrete deforms but without breaking any further than conventional concrete. This research aims to involve this type of concrete, bendable concrete, that will give solut
... Show MoreA total of 589 fishes, belonging to 23 species were collected from eight different localities
in north and mid Iraq during 1993. The parasitological inspection of such fishes revealed the
presence of 59 parasite species and two fungi. Among such parasites, five monogenetic
trematodes were recorded on the gills of some fishes for the first time in Iraq. These
included:- Ancyrocephalus vanbenedenii on Liza abu from Tigris river at Al-Zaafaraniya,
south of Baghdad; Dactylogyrus anchoratus on Cyprinus carpio from Tigris river at Al –
Zaafaranya D. minutus on C. carpio from both Tigris river at Al-Zaafaraniya and Euphrates
river at Al-Qadisiya dam lake; Discocotyle sagittata on L. abu from both the drainage system
at
This paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e
... Show MoreNumerical Investigation was done for steady state laminar mixed convection and thermally and hydrodynamic fully developed flow through horizontal rectangular duct including circular core with two cases of time periodic boundary condition, first case on the rectangular wall while keeping core wall constant and other on both the rectangular duct and core walls. The used governing equations are continuity momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C.) methods. The Finite Difference approach with the Line Successive Over Relaxation (LSOR) method is used to obtain all the computational results the (B.F.C.) method is used to generate th
... Show MoreThe method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreIn recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne
... Show MoreExperimental and numerical studies have been conducted on the effects of bed roughness elements such as cubic and T-section elements that are regularly half-channel arrayed on one side of the river on turbulent flow characteristics and bed erosion downstream of the roughness elements. The experimental study has been done for two types of bed roughness elements (cubic and T-section shape) to study the effect of these elements on the velocity profile downstream the elements with respect to different water flow discharges and water depths. A comparison between the cubic and T-section artificial bed roughness showed that the velocity profile downstream the T-section increased in smooth side from the river and decrease in the rough side
... Show MoreBackground: The purpose of this study was to evaluate the effect of in vitro long-term simulation of oral conditions on the bond strength of PEEK CAD/CAM lingual retainers.
Material and methods: The sample consisted of 12 PEEK CAD/CAM retainers each composed of 2 centrally perforated 3x4mm pads joined by a connector. They were treated by 98% sulfuric acid for 1 minute and then conditioned with Single Bond Universal and bonded to the lingual surface of premolar teeth by 3M Transbond TM System. Half of the retainers were artificially aged using a 30-day water storage and 5000 thermocycling protocol before bond strength testing to compare with the non-aged specimens.
Results: The artificially aged retainers showed a marginally
... Show More