The rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an investigation of information security techniques in medical imaging, focusing on security goals. Encrypting a message before hiding them gives an extra layer of security, and thus, will provide an excellent solution to protect the sensitive information of patients during the sharing of medical information. Medical image steganography is a special case of image steganography, while Digital Imaging and Communications in Medicine (DICOM) is the backbone of all medical imaging divisions, whereby it is most broadly used to store and transmit medical images. The main objective of this study is to provide a general idea of what Least Significant Bit-based (LSB) steganography techniques have achieved in medical images.
Protecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images.
So, this study aimed at testing the system performance at poor s
... Show MoreThe finite element approach is used to solve a variety of difficulties, including well bore stability, fluid flow production and injection wells, mechanical issues and others. Geomechanics is a term that includes a number of important aspects in the petroleum industry, such as studying the changes that can be occur in oil reservoirs and geological structures, and providing a picture of oil well stability during drilling. The current review study concerned about the advancements in the application of the finite element method (FEM) in the geomechanical field over a course of century.
Firstly, the study presented the early advancements of this method by development the structural framework of stress, make numerical computer solution
... Show MoreReservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and
... Show Moreحضيت القيادة باهتمام كبير من قبل الباحثين ودورها الإيجابي في التأثير على الموظفين ونجاح المنظمات، في الآونة الأخير بدأت الدراسات تركز على الجانب المظلم للقيادة وتأثيرها على التابعين وبيئة العمل، وقد تم تحديد القيادة السامة بأنها أخطر الأساليب القيادية التي تتسبب بتكاليف مادية ومعنوية على المنظمات بمختلف جوانبها، ان القيادة السامة تأثر على دوافع المرؤوسين وقدرتهم على انجاز المهام، ورغبتهم في الاستمرار في
... Show MorePeriodontitis is a persistent bacterial-causing disease which damages the supporting periodontium of the teeth. The complexity of supporting tissue structure makes the regeneration a challenge for periodontists. Early investigations were focused on discovering therapeutic substitutes that are biocompatible, simple to prepare and economic. This might cause a local release of growth factors that accelerate the healing process of the soft and hard tissue. Recently, platelet-rich fibrin (PRF) has received a wide attention as a biocompatible regenerative material in both dental and medical fields. PRF is a natural fibrin-derived biomaterial, and it is easy to obtain. It can be gotten from individual blood without the use of any external anticoag
... Show MoreThis paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p
... Show MoreThe COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show More