Television white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-based TVWSDB. Reinforcement learning (RL) is a machine learning technique that focuses on what has been done based on mapping situations to actions to obtain the highest reward. The learning process was conducted by trying out the actions to gain the reward instead of being told what to do. The actions may directly affect the rewards and future rewards. Based on the results, this algorithm effectively searched the most optimal channel for the SUs in query with the minimum search duration. This paper presents the advantage of using a machine learning approach in TVWSDB with an accurate and faster-searching capability for the available TVWS channels intended for SUs.
This study aimed to explore The Degree of Practicing of the Sixth Primary Social Studies’ Teachers in Iraq for the Principles of Active Learning from their Point of view
The study society consisted of 230 male and femalesocial studiesteachers’ subjects for the sixth primary grade in Al-Anbar General Directorate of Education. 160 of them were selected to represent the sample of the study with a percent of (70%) from the original society. To achieve the aims of the study, the researchers prepared a questionnaire consisting of (43) items which represented the active learning principles. The validity and stability of the tool were verified. The researchers used the descriptive approach to suit the objectives of this study. &
... Show MoreProducts’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers. In this research, we pr
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreDiagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show MoreSemantic segmentation is effective in numerous object classification tasks such as autonomous vehicles and scene understanding. With the advent in the deep learning domain, lots of efforts are seen in applying deep learning algorithms for semantic segmentation. Most of the algorithms gain the required accuracy while compromising on their storage and computational requirements. The work showcases the implementation of Convolutional Neural Network (CNN) using Discrete Cosine Transform (DCT), where DCT exhibit exceptional energy compaction properties. The proposed Adaptive Weight Wiener Filter (AWWF) rearranges the DCT coefficients by truncating the high frequency coefficients. AWWF-DCT model reinstate the convolutional l
... Show More
The present article concerns one of the objects of media sociology under construction. The transformation of the rites in the use of the television contents in the era of digital technologies and media convergence. By an analytic contextual approach, based on the study of the uses, we formulate the following hypothesis: so many changes in the rites of uses are real, in particular at the young people, so, many pieces integer of the everyday life remain impervious to these changes, and it is true under the influence of a slowness of the social and cultural orders, rooted for a long time in the traditional social fabric. We shall then try to bring a sociological look to this societal, cultural, and communicational object that is the pas
Abstract
This research aims to identify the effect of measuring reinforcement (regular - irregular) in gamification upon developing computer skills among secondary education students in the Kingdom of Saudi Arabia. The research experiment was applied on two samples of (68) secondary education students in the Kingdom of Saudi Arabia in the Aurar region. The results revealed there is a significant difference between the experimental group that used (irregular) reinforcement and the control group used (regular) reinforcement in gamification through the post-application of the electronic programming test and through the programming, language skills observing card (Visual Basic Studio).
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreIn this study, the concept of fuzzy α-topological vector space is introduced by using the concept fuzzy α-open set , some properties of fuzzy α-topological vector spaces are proved .We also show that the space is -space iff every singleton set is fuzzy α- closed .Finally, the convex property and its relation with the interior points are discussed.