Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to evaluate the pronunciation of the Arabic alphabet. Voice data from six school children are recorded and used to test the performance of the proposed method. The padding technique has been used to augment the voice data before feeding the data to the CNN structure to developed the classification model. In addition, three other feature extraction techniques have been introduced to enable the comparison of the proposed method which employs padding technique. The performance of the proposed method with padding technique is at par with the spectrogram but better than mel-spectrogram and mel-frequency cepstral coefficients. Results also show that the proposed method was able to distinguish the Arabic alphabets that are difficult to pronounce. The proposed method with padding technique may be extended to address other voice pronunciation ability other than the Arabic alphabets.
Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreCommunicative-based textbooks are developed and disseminated throughout the country.
However, it is difficult for teachers who themselves have learnt English through the traditional
approaches to suddenly be familiar with CLT (Communicative Language Teaching) principles
and teach communicatively. Therefore, many teachers remain somewhat confused about what
exactly CLT is and others familiar with CLT but unable to achieve communicative classroom
teaching. Consequently, those teachers need to be introduced to the CLT principles and they need
training in how to put CLT principles into practice. Accordingly, this study aims to find out the
effect of combining video lectures and Kolb experiential learning on EFL student-t
A new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.
Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies. In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul
... Show MoreCipher security is becoming an important step when transmitting important information through networks. The algorithms of cryptography play major roles in providing security and avoiding hacker attacks. In this work two hybrid cryptosystems have been proposed, that combine a modification of the symmetric cryptosystem Playfair cipher called the modified Playfair cipher and two modifications of the asymmetric cryptosystem RSA called the square of RSA technique and the square RSA with Chinese remainder theorem technique. The proposed hybrid cryptosystems have two layers of encryption and decryption. In the first layer the plaintext is encrypted using modified Playfair to get the cipher text, this cipher text will be encrypted using squared
... Show MoreThe current research aims at: - Identifying the role played by the leadership in empowerment and organizational learning abilities and their reflection on the knowledge capital, and the extent to which these concepts can be applied effectively at Wasit University. The problem of research .... In a series of questions: The most important is that the dimensions leadership empowerment and distance learning organizational capacity correlation relationship and impact and significant statistical significance with the capital knowledge.
To understand the nature of the relationship and the impact between the variables, leadership was adopted by empowerment as the fir
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreOptical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show More