Preferred Language
Articles
/
bsj-6213
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network
...Show More Authors

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to evaluate the pronunciation of the Arabic alphabet. Voice data from six school children are recorded and used to test the performance of the proposed method. The padding technique has been used to augment the voice data before feeding the data to the CNN structure to developed the classification model. In addition, three other feature extraction techniques have been introduced to enable the comparison of the proposed method which employs padding technique. The performance of the proposed method with padding technique is at par with the spectrogram but better than mel-spectrogram and mel-frequency cepstral coefficients. Results also show that the proposed method was able to distinguish the Arabic alphabets that are difficult to pronounce. The proposed method with padding technique may be extended to address other voice pronunciation ability other than the Arabic alphabets.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2025
Journal Name
Journal Of Intelligent Systems And Internet Of Things
Enhancing Convolutional Neural Network for Image Retrieval
...Show More Authors

With the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jun 01 2008
Journal Name
2008 Ieee International Joint Conference On Neural Networks (ieee World Congress On Computational Intelligence)
Linear block code decoder using neural network
...Show More Authors

View Publication
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Performance evaluation of heterogeneous network based on RED and WRED
...Show More Authors

Scopus (3)
Scopus
Publication Date
Wed Mar 16 2022
Journal Name
International Journal Of Recent Contributions From Engineering, Science & It
Smart Learning based on Moodle E-learning Platform and Digital Skills for University Students
...Show More Authors

Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Speech Gender Recognition Using a Multilayer Feature Extraction Method
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Machine Learning And Data Mining In Pattern Recognition
A New Strategy for Case-Based Reasoning Retrieval Using Classification Based on Association
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Mar 30 2023
Journal Name
College Of Islamic Sciences
Title: Arabic Manuscript, Concepts and Terms and Their Impact on Determining Its Historical beginnings and extension of its existence.
...Show More Authors

Title: Arabic Manuscript, Concepts and Terms and Their Impact on Determining Its Historical beginnings and extension of its existence.

Researcher: Dr. Atallah Madb Hammadi Zubaie.

Bn the name of Allah Most Merciful

The interest in manuscripts and rules  of their investigation and dissemination appeared soon, and the speech in editing terms and concepts appeared in sooner time.  When looking at the classified books  in the Arab manuscripts , we find the books of the first generation  did not allude definition for this term  , but rather  focused on  the importance of manuscripts and their  existence locations, indexing, care, and verification rules. The  reason for this is that the science of Arabic manuscrip

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Laser
Plasmonic Nanoparticles Decorated Salty Paper Based on SERS Platform for Diagnostic low-Level Contamination: Lab on Paper
...Show More Authors

In this research, a low cost, portable, disposable, environment friendly and an easy to use lab-on-paper platform sensor was made. The sensor was constructed using a mixture of Rhodamine-6G and gold nanoparticles also Sodium chloride salt. Drop–casting method was utilized as a technique to make a platform which is a commercial office paper. A substrate was characterized using Field Emission Scanning Electron Microscope, Fourier transform infrared spectroscopy, UV-visible spectrophotometer and Raman Spectrometer. Rh-6G Raman signal was enhanced based on Surface Enhanced Raman Spectroscopy technique utilized gold nanoparticles. High Enhancement factor of Plasmonic commercial office paper reaches up to 0.9 x105 because of local surface pl

... Show More
View Publication Preview PDF