Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to evaluate the pronunciation of the Arabic alphabet. Voice data from six school children are recorded and used to test the performance of the proposed method. The padding technique has been used to augment the voice data before feeding the data to the CNN structure to developed the classification model. In addition, three other feature extraction techniques have been introduced to enable the comparison of the proposed method which employs padding technique. The performance of the proposed method with padding technique is at par with the spectrogram but better than mel-spectrogram and mel-frequency cepstral coefficients. Results also show that the proposed method was able to distinguish the Arabic alphabets that are difficult to pronounce. The proposed method with padding technique may be extended to address other voice pronunciation ability other than the Arabic alphabets.
Hate speech (henceforth HS) has recently spread and become an important issue. This type of speech in children's writings has a particular formulation and specific objectives that the authors intend to convey. Thus, the study aims at examining qualitatively and quantitatively the classism HS and its pragmatic functions via identifying the speech acts used to express classism HS, the implicature instigated as well as impoliteness. Since pragmatics is the study of language in context, which is greatly related to the situations and speaker’s intention, this study depends on pragmatic theoriespeech acts, impoliteness and conversational implicature) to analyze the data which are taken from Katherine Mansfield's short story (The D
... Show MoreAstronomy image is regarded main source of information to discover outer space, therefore to know the basic contain for galaxy (Milky way), it was classified using Variable Precision Rough Sets technique to determine the different region within galaxy according different color in the image. From classified image we can determined the percentage for each class and then what is the percentage mean. In this technique a good classified image result and faster time required to done the classification process.
ان الرأسمالية ليست بناءً هندسياً يتم انتظامه وفقاً للنظريات الهندسية والمعادلات الرياضية والفنون المعمارية، لأنها ببساطة نظاماً اجتماعياً يقوم على تشكيلة اقتصادية معينة، والأخيرة تقوم على مستوى معين لتطور قوى الانتاج (التكنولوجيا) والذي يقوم عليه مستوىً معين لعلاقات الإنتاج، ويقوم على التشكيلة الاقتصادية/ نمط الإنتاج نظاماً سياسياً، هو جزء من البناء الفوقي، ولأنها نظاماً اجتماعياً بالمواصفات انفة
... Show MoreTwelve compounds containing a sulphur- or oxygen-based heterocyclic core, 1,3- oxazole or 1,3-thiazole ring with hydroxy, methoxy and methyl terminal substituent, were synthesized and characterized. The molecular structures of these compounds were performed by elemental analysis and different spectroscopic tequniques. The liquid crystalline behaviors were studied by using hot-stage optical polarizing microscopy and differential scanning calorimetry. All compounds of 1,4- disubstituted benzene core with oxazole ring display liquid crystalline smectic A (SmA) mesophase. The compounds of 1,3- and 1,4-disubstituted benzene core with thiazole ring exhibit exclusively enantiotropic nematic liquid crystal phases.
The present research aims to design an electronic system based on cloud computing to develop electronic tasks for students of the University of Mosul. Achieving this goal required designing an electronic system that includes all theoretical information, applied procedures, instructions, orders for computer programs, and identifying its effectiveness in developing Electronic tasks for students of the University of Mosul. Accordingly, the researchers formulated three hypotheses related to the cognitive and performance aspects of the electronic tasks. To verify the research hypotheses, a sample of (91) students is intentionally chosen from the research community, represented by the students of the college of education for humanities and col
... Show MoreGum Arabic is a natural gummy exudate gained from the trees of Acacia species (Acacia senegal and Acacia seyal), Family: Fabaceae. Gum Arabic considers as a dietary fiber with a high percentage of carbohydrates and low protein content. Sugars arabinose and ribose were originally discovered and isolated from gum Arabic and it is representing the original source of these sugars. A gum emanation from trees occurs under stress conditions such as heat, poor soil fertility, drought, and injury. Mainly gum is produced in belt region of Africa, mainly Sudan, Chad, and Nigeria. In the food industry, it is used in confectionery; in the pharmaceutical industry, it is used as emulsifier, film coating and others. Traditionally the g
... Show MoreA simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreFeature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show More