Renewable energy technology is growing fast especially photovoltaic (PV) system to move the conventional electricity generation and distribution towards smart grid. However, similar to monthly electricity bill, the PV energy producers can only monitor their energy PV generation once a month. Any malfuntion in PV system components may reduce the performance of the system without notice. Thus, developing a real-time monitoring system of PV production is very crucial for early detection. In addition, electricity consumption is also important to be monitored more frequently to increase energy savings awareness among consumers. Hardware based Internet-of-Thing (IoT) monitoring and control system is widely used. However, the implementation of the actual smart grid system is high in cost. Thus, simulation and modelling of the system is important to see the capability of the actual system before being employed. Since the smart grid and its components are usually modeled using MATLAB/Simulink, the communication between MATLAB/Simulink, IoT platform such as ThingSpeak and mobile application is crucial to be explored to gain a better understanding of the features of the smart grid. To achieve the objectives, there are five main steps which are simulation of grid-connected photovoltaic (PV) system to generate data to be monitored and controlled using HOMER software, then, development of monitoring on ThingSpeak and mobile application using MIT App Inventor 2. Next, the control system is developed on mobile application and the communication on how data are transferred between all the softwares are set up. The results show that all the seletected parameters can be monitored in real-time successfully. The developed mobile application can be used to control the MATLAB/Simulink in two modes. During automatic mode, ThingSpeak controls the MATLAB/Simulink by giving a zero signal (OFF) if load demand is less than the power generated by PV and a one signal (ON) if the load demand is greater than PV power. During manual mode, consumer can send ON or OFF signal to MATLAB/Simulink via the mobile application unconditionally. It is hoped that the proposed system will bring many benefits in modeling a complete smart grid system in MATLAB/Simulink.
Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good
This paper introduces a complete design and simulation of a controller for the double fed induction generator (DFIG) turbine. The work also included the solar updraft tower (SUT) design to supply Al-Mahmoudia hospital in Baghdad/Iraq. The design includes the daily average load estimation, annual solar irradiance and, temperature monitoring, and logging.
According to the data obtained from the Ministry of Science and Technology, Baghdad has low wind speed. Therefore, the (SUT) has been designed to generate electrical power depending on the difference between the external and internal air temperature. The temperature difference will generate a suitable airspeed to drive the wind turbine, connected to the proposed (DFIG) generators
... Show MoreThis study aimed to investigate the feasibility of treatment actual potato chips processing wastewater in a continuously operated dual chambers microbial fuel cell (MFC) inoculated with anaerobic sludge. The results demonstrated significant removal of COD and suspended solids of more than 99% associated with relatively high generation of current and power densities of 612.5 mW/m3 and 1750 mA/m3, respectively at 100 Ω external resistance.
Abstract: Background: Optical biosensors offer excellent properties and methods for detecting bacteria when compared to traditional analytical techniques. It allows direct detection of many biological and chemical materials. Bacteria are found in the human body naturally non-pathogenic and pathologically, as they are found in other living organisms. One of these bacteria is Escherichia coli (E. coli) which are found in the human body in its natural and pathogenic form. E.coli bacteria cause many diseases, including Stomach, intestines, urinary system infections, and others. The aim of this study: is sensing and differentiation between normal flora and pathogenic E.coli. Material and method:
... Show MoreThe subgrade soil is the foundation plate form of the roadway; it should sustain its structural characteristics throughout the design life of the roadway with minimal requirements for maintenance. When Gypseous soil is implemented in the construction of subgrade, problems regarding collapsibility and poor structural capacity usually occur when the subgrade came in touch with excess water. Asphalt stabilization could furnish a proper solution to such problems. In this investigation, an attempt has been made to monitor the variations in compressibility characteristics of asphalt stabilized subgrade soil subjected to 30 cycles of (freezing-thawing) and (heating-cooling). Data have been observed after each 10 cycles, and compared with that of r
... Show More