Renewable energy technology is growing fast especially photovoltaic (PV) system to move the conventional electricity generation and distribution towards smart grid. However, similar to monthly electricity bill, the PV energy producers can only monitor their energy PV generation once a month. Any malfuntion in PV system components may reduce the performance of the system without notice. Thus, developing a real-time monitoring system of PV production is very crucial for early detection. In addition, electricity consumption is also important to be monitored more frequently to increase energy savings awareness among consumers. Hardware based Internet-of-Thing (IoT) monitoring and control system is widely used. However, the implementation of the actual smart grid system is high in cost. Thus, simulation and modelling of the system is important to see the capability of the actual system before being employed. Since the smart grid and its components are usually modeled using MATLAB/Simulink, the communication between MATLAB/Simulink, IoT platform such as ThingSpeak and mobile application is crucial to be explored to gain a better understanding of the features of the smart grid. To achieve the objectives, there are five main steps which are simulation of grid-connected photovoltaic (PV) system to generate data to be monitored and controlled using HOMER software, then, development of monitoring on ThingSpeak and mobile application using MIT App Inventor 2. Next, the control system is developed on mobile application and the communication on how data are transferred between all the softwares are set up. The results show that all the seletected parameters can be monitored in real-time successfully. The developed mobile application can be used to control the MATLAB/Simulink in two modes. During automatic mode, ThingSpeak controls the MATLAB/Simulink by giving a zero signal (OFF) if load demand is less than the power generated by PV and a one signal (ON) if the load demand is greater than PV power. During manual mode, consumer can send ON or OFF signal to MATLAB/Simulink via the mobile application unconditionally. It is hoped that the proposed system will bring many benefits in modeling a complete smart grid system in MATLAB/Simulink.
APDBN Rashid, Review of International Geographical Education Online (RIGEO), 2021
The research involves using phenol – formaldehyde (Novolak) resin as matrix for making composite material, while glass fiber type (E) was used as reinforcing materials. The specimen of the composite material is reinforced with (60%) ratio of glass fiber.
The impregnation method is used in test sample preparation, using molding by pressure presses.
All samples were exposure to (Co60) gamma rays of an average energy (2.5)Mev. The total doses were (208, 312 and 728) KGy.
The mechanical tests (bending, bending strength, shear force, impact strength and surface indentation) were performed on un irradiated and irrad
... Show MoreThe current issues in spam email detection systems are directly related to spam email classification's low accuracy and feature selection's high dimensionality. However, in machine learning (ML), feature selection (FS) as a global optimization strategy reduces data redundancy and produces a collection of precise and acceptable outcomes. A black hole algorithm-based FS algorithm is suggested in this paper for reducing the dimensionality of features and improving the accuracy of spam email classification. Each star's features are represented in binary form, with the features being transformed to binary using a sigmoid function. The proposed Binary Black Hole Algorithm (BBH) searches the feature space for the best feature subsets,
... Show MoreAtenolol was used with povidone iodine to prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between atenolol and povidone iodine in an aqueous medium. Optimum parameters was studied to increase the sensitivity development of method. Calibration graph was linear in the range of 2-19 mmol/L for cell A and 5-19 mmol/L for cell B. Limit of detection 146.4848 ng/55 µL and 2.6600 µg/200 µL respectively to cell A and cell B. Correlation coefficient (r) 0.9957 for cell A and 0.9974 for cell. Relative standard deviation (RSD %) was lower than 1%, (n=8) for the determination of
... Show MoreNonlinear time series analysis is one of the most complex problems ; especially the nonlinear autoregressive with exogenous variable (NARX) .Then ; the problem of model identification and the correct orders determination considered the most important problem in the analysis of time series . In this paper , we proposed splines estimation method for model identification , then we used three criterions for the correct orders determination. Where ; proposed method used to estimate the additive splines for model identification , And the rank determination depends on the additive property to avoid the problem of curse dimensionally . The proposed method is one of the nonparametric methods , and the simulation results give a
... Show More