Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
Iraq suffers from serious pollution with harmful particles that have important direct and indirect effects on human activities and human health. In this research, a system for detecting pollutants in the air was designed and manufactured using infrared laser technology. This system was used to detect the presence of pollutants in the dust storms that swept the city of Baghdad which could have a negative impact on human health and living organisms.
The designed detection system based on the use of infrared laser (IR) with a wavelength of 1064 nm was used for the purposes of detecting pollutants based on the scattering of the laser beam from these pollutants. The system was aligned to obtain the best signal for the scattered rays, w
... Show MoreRecommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a n
... Show MoreThe research aims to explain the reality and the roots of the problem financial crisis and its impact on the performance of the Amman Stock Exchange, by testing three hypotheses, the first and the second relates to the performance of the Amman Stock Exchange and its sectors before and after the financial crisis. And the third examined the relationship between indirect foreign investment and the performance of Amman Stock Exchange.
Hypothesis testing results of the first and second pointed to the existence of statistically significant differences for the performance of the stock market in general and in particular their performance for the period before and after the financial crisis. The third hypothesis resu
ABSTRACT
The study aimed to evaluate the information label of some local pickle products and estimate sodium benzoate therein. 85 samples of locally made pickles were collected from Baghdad city markets and randomly from five different areas in Baghdad it included (Al-Shula, Al-Bayaa, Al-Nahrawan, Al-Taji, and Abu Ghraib), which were divided into groups P1, P2, P3, P4 and P5, respectively, according to those areas, samples information label was scanned and compared with the Iraqi standard specification for the information card of packaged and canned food IQS 230, the results showed that 25.9% of the samples were devoid of the indication card informa
... Show MoreAqueous Two Phase System (ATPS) or liquid-liquid extraction is used in biotechnology to recover valuable compounds from raw sources. In Aqueous Two-Phase Systems, many factors influence the Partition coefficient, K, (which is the ratio of protein concentration in the top phase to that in the bottom phase) and the Recovery percentage (Rec%). In this research, two systems of ATPS were used: first, polyethylene glycol (PEG) 4000/Sodium citrate (SC), and the second, PEG8000/ Sodium phosphate (SPH), for the extraction of Bovine Serum Albumin (BSA). The behavior of Rec% and K of pure (BSA) in ATPS has been investigated throughout the study by the effects of five parameters: temperature, concentration of polyethylene glycol (P
... Show MoreBackground: Health information systems in most countries are inadequate in providing the needed management support and the current health information systems are therefore widely seen as management obstacles rather than as tools,Objectives: the current study is an attempt to assess the behavioral and organizational determinants of health information system performance in Iraq.Methods: A cross-sectional study was conducted by interviewed a total of 189 respondents selected from six Iraqi governorates. The Organizational and Behavioral Assessment Tool was used to measure the behavioral and organizational determinants of health information system performance, it is one of the PRISM package tools that are used to assess the health informatio
... Show MoreAccurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show MoreObjective(s): To evaluate students’ communication skills and their academic performance; to compare between the students relative to communication skills and their academic performance in the University of Baghdad and to identify the relationship between students’ communication skills, academic performance and their socio-demographic characteristics of age, gender, grade and socioeconomic status. Methodology: A descriptive design, using the evaluation approach, is carried through the present study to evaluate colleges’ students’ communication skills and their academic performance in the University of Baghdad for the period of January 7th 2019 to August 28th 2019. A non-probability, purposive sample, of (80) university students, i
... Show More