Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
Research is aimed at defining the risks that the sales activity of the General Company for Leather Industries about a special, then diagnose these risks, through a set of indicators, which indicate its existence and try to overcome them, and minimizing the negative effects on those activities.
The research found some conclusions, which emphasizes that the General Company for Leather Industries, suffer from a lack of profit, and a large decrease in sales; a result of absence of demand on its products and rising cost of the expenses to income ratio of, which was reflected in the cost per unit produced. Also the conclusions shown that the number of sales outlets for the company to cover the geographical area is not enough, in spite
... Show MoreIn this paper, an eco-epidemiological prey-predator system when the predator is subjected to the weak Allee effect, and harvesting was proposed and studied. The set of ordinary differential equations that simulate the system’s dynamic is constructed. The impact of fear and Allee’s effect on the system's dynamic behavior is one of our main objectives. The properties of the solution of the system were studied. All possible equilibrium points were determined, and their local, as well as global stabilities, were investigated. The possibility of the occurrence of local bifurcation was studied. Numerical simulation was used to further evaluate the global dynamics and understood the effects of varying parameters on the asymptotic behavior of t
... Show MoreObjective: Detection the presumptive prevalence of silent celiac disease in patients with type 1 diabetes mellitus with determination of which gender more likely to be affected.
Methods: One hundred twenty asymptomatic patients [75 male , 45 female] with type 1 diabetes mellitus with mean age ± SD of 11.25 ± 2.85 year where included in the study . All subjects were serologically screened for the presence of anti-tissue transglutaminase IgA antibodies (anti-tTG antibodies) by Enzyme-Linked Immunosorbent Assay (ELISA) & total IgA was also measured for all using radial immunodiffusion plate . Anti-tissue transglutaminase IgG was selectively done for patients who were expressing negative anti-tissue transglutaminase IgA with low tot
Objective: Detection the presumptive prevalence of
silent celiac disease in patients with type 1 diabetes
mellitus with determination of which gender more
likely to be affected.
Methods: One hundred twenty asymptomatic patients
[75 male , 45 female] with type 1 diabetes mellitus
with mean age ± SD of 11.25 ± 2.85 year where
included in the study . All subjects were serologically
screened for the presence of anti-tissue transglutaminase
IgA antibodies (anti-tTG antibodies) by Enzyme-
Linked Immunosorbent Assay (ELISA) & total IgA
was also measured for all using radial
immunodiffusion plate . Anti-tissue transglutaminase
IgG was selectively done for patients who were
expressing negative anti-
هدفت هذه الدراسة إلى التعرف على دور نظام معلومات الموارد البشرية في تحقيق متطلبات عملية تقويم أداء أعضاء الهيئة التدريسية في كلية الإدارة والاقتصاد/جامعة بغداد. وقد تحددت مشكلة الدراسة في عدد من التساؤلات، أهمها: ما تأثير كل متغير من متغيرات نظام معلومات الموارد البشرية في عملية تقويم أداء أعضاء الهيئة التدريسية في الكلية المبحوثة؟ وما تأثير متغيرات نظام معلومات الموارد البشرية مجتمعة في عملية تقويم الأداء
... Show MoreElectrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel. Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig
... Show More