Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreAbstract
In this manuscript, a simple new method for the green synthesis of platinum nanoparticles (Pt NPs) utilizing F. carica Fig extract as reducing agent for antimicrobial activities was reported. Simultaneously, the microstructural and morphological features of the synthesized Pt NPs were thoroughly investigated. In particular, the attained Pt NPs exhibited spherical shape with diameter range of 5-30 nm and root mean square of 9.48 nm using Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), respectively. Additionally, the final product (Pt NPs) was screened as antifungal and antibacterial agent against Candida and Aspergillus species as well as Gram-positive Staphyllococcus aureus and G
... Show MoreThe aims of the research is to know the role of Organisational learning in building talent management strategies in the Ministry of Science and Technology , where we see the challenges facing organizations today dictate now and in the future activation of scientific expertise to meet these challenges and the dissemination of these concepts within the priorities and data organizational culture of these organizations despite having a lot of the importance of organizational knowledge and learning applications .Despite learning and adopting some of the organizations have to enhance their competitiveness, we find a lot of organizations, including (The ministry researched) still do not realize the importance of the role of organization
... Show MoreThe aim of this study was to Identifying The Effect of using Linear programming and Branching programming by computer in Learning and Retention of movement concatenation(Linkwork) in parallel bars in Artistic Gymnastics. The searchers have used the experimental method. The search subject of this article has been taken (30) male - students in the second class from the College of Physical Education/University of Baghdad divided into three groups; the first group applied linear programming by computer, and the second group has been applicated branching programming by computer, while precision group used traditional method in the college. The researchers concluded the results by using the statistical bag for social sciences (spss) such as both
... Show MoreActive worms have posed a major security threat to the Internet, and many research efforts have focused on them. This paper is interested in internet worm that spreads via TCP, which accounts for the majority of internet traffic. It presents an approach that use a hybrid solution between two detection algorithms: behavior base detection and signature base detection to have the features of each of them. The aim of this study is to have a good solution of detecting worm and stealthy worm with the feature of the speed. This proposal was designed in distributed collaborative scheme based on the small-world network model to effectively improve the system performance.
The research statement to the amount of the contribution of information and communication technology in the quality of tourism and hotel services, and determine the relationship between the impact of information and communication and the quality of tourism services technology, The importance of the research is to establish the philosophical thinking of the nature of variables, as a modern administrative terminology and employ them towards the quality of tourism and hotel services, the research dealt with a problem expressed by a number of intellectual and practical questions, Was formulated based on the current situation witnessed by the tourism sector and hotel in Iraq, and the real gap was the lack of awareness of the impo
... Show More There is an increase in the need for cost accounting in all organizations and from different sectors to provide detailed information to the totals of financial accounting, first and help solve problems associated with inventory and analysis, tabulation and allocation of cost elements II and do the planning process and provide the necessary oversight and help to take the right decisions such as pricing decisions that need to Information cost accounting.
And suffer most of the non-governmental organizations from the lack of a cost accounting system provides information on the cost of service in these organizations and the department research sample circle v
The effect of three ionic liquids viz., 1-hexyl-3-methylimidazolium tetrafluoroborate (ILE), 1-hexyl-3-metylimidazolium hexafluorophosphate (ILF) and 1-octyl-3-methylimidazolium tetrafluoroborate (ILG) when used as surfactants on the performance of dissolved air floatation (DAF) was investigated.
Experiments were conducted at a temperature of 30-35 ºC, 10ppm ferric chloride as coagulant, 50% recycle ratio, pH 8, and 10 minutes treatment time to find oil and grease (OG) and turbidity removal efficiencies at saturation pressure (2-6) bar.
ILs were used at concentration of 50 µl/liter of treated water in two positions in DAF system; the saturation vessel and the treatment tank. The performance using ILs
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More