In this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
Orthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show MoreThe research aims to clarify the COBIT5 framework for IT governance and to develop of a criterion based on Balanced Scorecard that contributes in measuring the performance of IT governance. To achieve these goals, the researchers adopted the deductive approach in the design of balanced scorecard to measure the IT governance at the Bank of Baghdad that was chosen because it relied heavily on IT.
The research has reached a number of conclusions, the most important of which is that the performance of IT department in the Bank of Baghdad falls within the good level that requires constant monitoring, the most committed items of Balanced Scorecard by the Bank were customer, internal operation, growth and finally the financial item; IT
... Show MoreResearchers used different methods such as image processing and machine learning techniques in addition to medical instruments such as Placido disc, Keratoscopy, Pentacam;to help diagnosing variety of diseases that affect the eye. Our paper aims to detect one of these diseases that affect the cornea, which is Keratoconus. This is done by using image processing techniques and pattern classification methods. Pentacam is the device that is used to detect the cornea’s health; it provides four maps that can distinguish the changes on the surface of the cornea which can be used for Keratoconus detection. In this study, sixteen features were extracted from the four refractive maps along with five readings from the Pentacam software. The
... Show MoreThe impact of a proposal for the curriculum dictated by some of the barriers to the development of motor skillsA. M. D. Huda Ibrahim RezoukiM. M. Susan Salim DawoodIs the childhood of the most important and most fertile stage of basic education because of their significant impact in building a base on which the stated origin of sound in the early stages older age because the baby at this stage be very vulnerability to environmental factors different surroundings in which to leave their mark on his life in the stages of life other.The Gymnastics of sports long-term training, which begins between the ages very early relative to the rest of other games to reach the stage of the tournament from the age of 13-17 years almost to the women, this a
... Show MoreBackground:
Multiple sclerosis is a chronic disease believed to be the result of autoimmune disorders of the central nervous system, characterised by inflammation, demyelination, and axonal transection, affecting primarily young adults. Disease modifying therapies have become widely used, and the rapid development of these drugs highlighted the need to update our knowledge on their short- and long-term safety profile.
Objective:
The study aim is to evaluate the impact of disease-modifying treatments on thyroid functions and thyroid autoantibodies with subsequent effects on the outcome of the disease.
Materials and Methods:
A retro prospective study
... Show MoreThe proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreThe development in manufacturing computers from both (Hardware and Software) sides, make complicated robust estimators became computable and gave us new way of dealing with the data, when classical discriminant methods failed in achieving its optimal properties especially when data contains a percentage of outliers. Thus, the inability to have the minimum probability of misclassification. The research aim to compare robust estimators which are resistant to outlier influence like robust H estimator, robust S estimator and robust MCD estimator, also robustify misclassification probability with showing outlier influence on the percentage of misclassification when using classical methods. ,the other
... Show More