In this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
Virtual reality, VR, offers many benefits to technical education, including the delivery of information through multiple active channels, the addressing of different learning styles, and experiential-based learning. This paper presents work performed by the authors to apply VR to engineering education, in three broad project areas: virtual robotic learning, virtual mechatronics laboratory, and a virtual manufacturing platform. The first area provides guided exploration of domains otherwise inaccessible, such as the robotic cell components, robotic kinematics and work envelope. The second promotes mechatronics learning and guidance for new mechatronics engineers when dealing with robots in a safe and interactive manner. And the thir
... Show MoreWe introduce a new class of harmonici multivalent functions define by generalized Rucheweyh derivative operator. We also obtain several interesting propertiesi such as sharp coefficienit estimates, distortioni bound, extreme points, Hadamardi product and other several results. Derivative; extreme points.
This study deals with a prominent critical term - poetics - in critical studies as an area related to uncovering the laws of creative and aesthetic discourses (Preaching)، and the various functions that accompany it in literary texts. So، the study employs the pioneers' works of this theory specially the eastern theorists in making a parallel comparing study of the text book of " the Magic and Poetry” by Al-Lisan Al-Din bin Al-Khatib (776 AH). It displays the utility of the concept of poetics in the referred book pointing to the illumination of various functions that، in turn، reflected the
A mathematical method with a new algorithm with the aid of Matlab language is proposed to compute the linear equivalence (or the recursion length) of the pseudo-random key-stream periodic sequences using Fourier transform. The proposed method enables the computation of the linear equivalence to determine the degree of the complexity of any binary or real periodic sequences produced from linear or nonlinear key-stream generators. The procedure can be used with comparatively greater computational ease and efficiency. The results of this algorithm are compared with Berlekamp-Massey (BM) method and good results are obtained where the results of the Fourier transform are more accurate than those of (BM) method for computing the linear equivalenc
... Show MoreDecision making is vital and important activity in field operations research ,engineering ,administration science and economic science with any industrial or service company or organization because the core of management process as well as improve him performance . The research includes decision making process when the objective function is fraction function and solve models fraction programming by using some fraction programming methods and using goal programming method aid programming ( win QSB )and the results explain the effect use the goal programming method in decision making process when the objective function is
fraction .
In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given
In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.