Everybody is connected with social media like (Facebook, Twitter, LinkedIn, Instagram…etc.) that generate a large quantity of data and which traditional applications are inadequate to process. Social media are regarded as an important platform for sharing information, opinion, and knowledge of many subscribers. These basic media attribute Big data also to many issues, such as data collection, storage, moving, updating, reviewing, posting, scanning, visualization, Data protection, etc. To deal with all these problems, this is a need for an adequate system that not just prepares the details, but also provides meaningful analysis to take advantage of the difficult situations, relevant to business, proper decision, Health, social media, science, telecommunications, the environment, etc. Authors notice through reading of previous studies that there are different analyzes through HADOOP and its various tools such as the sentiment in real-time and others. However, dealing with this Big data is a challenging task. Therefore, such type of analysis is more efficiently possible only through the Hadoop Ecosystem. The purpose of this paper is to analyze literature related analysis of big data of social media using the Hadoop framework for knowing almost analysis tools existing in the world under the Hadoop umbrella and its orientations in addition to difficulties and modern methods of them to overcome challenges of big data in offline and real –time processing. Real-time Analytics accelerates decision-making along with providing access to business metrics and reporting. Comparison between Hadoop and spark has been also illustrated.
Evaluation is one of the most important elements of teaching process. The recent trends in evaluation and educational reform movements have called for using alternative evaluation, which focuses on performance evaluation. Authentic assessment is usually described as formative, in which students participate in their acquisition, in addition to the fact that students are productive and active, which is reflected in the students' achievement and skill level. The study aims to reveal the degree of knowledge and use of alternative assessment tools by primary school teachers in Gaza -Palestine. To meet the objective of the study, the researchers used the descriptive-analytical method and the questioner as a study tool. The study sample c
... Show MoreAttacking a transferred data over a network is frequently happened millions time a day. To address this problem, a secure scheme is proposed which is securing a transferred data over a network. The proposed scheme uses two techniques to guarantee a secure transferring for a message. The message is encrypted as a first step, and then it is hided in a video cover. The proposed encrypting technique is RC4 stream cipher algorithm in order to increase the message's confidentiality, as well as improving the least significant bit embedding algorithm (LSB) by adding an additional layer of security. The improvement of the LSB method comes by replacing the adopted sequential selection by a random selection manner of the frames and the pixels wit
... Show MoreThe seasonal behavior of the light curve for selected star SS UMI and EXDRA during outburst cycle is studied. This behavior describes maximum temperature of outburst in dwarf nova. The raw data has been mathematically modeled by fitting Gaussian function based on the full width of the half maximum and the maximum value of the Gaussian. The results of this modeling describe the value of temperature of the dwarf novae star system leading to identify the type of elements that each dwarf nova consisted of.
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreData mining is a data analysis process using software to find certain patterns or rules in a large amount of data, which is expected to provide knowledge to support decisions. However, missing value in data mining often leads to a loss of information. The purpose of this study is to improve the performance of data classification with missing values, precisely and accurately. The test method is carried out using the Car Evaluation dataset from the UCI Machine Learning Repository. RStudio and RapidMiner tools were used for testing the algorithm. This study will result in a data analysis of the tested parameters to measure the performance of the algorithm. Using test variations: performance at C5.0, C4.5, and k-NN at 0% missi
... Show MoreThis research is a theoretical study that deals with the presentation of the literature of statistical analysis from the perspective of gender or what is called Engendering Statistics. The researcher relied on a number of UN reports as well as some foreign sources to conduct the current study. Gender statistics are defined as statistics that reflect the differences and inequality of the status of women and men overall domains of life, and their importance stems from the fact that it is an important tool in promoting equality as a necessity for the process of sustainable development and the formulation of national and effective development policies and programs. The empowerment of women and the achievement of equality between men and wome
... Show MoreOffline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show More