A new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2- γ-Al2O3 Nano catalyst were then characterized by XRD, AFM, and BET surface area, SEM, XRF, and FTIR. The performance of the synthesized catalyst for removing sulfur compounds was conducted through the pilot HDS laboratory unit, various temperatures range 275oC to 375°C, LHSV 1 h-1 were studied; moreover, the effect of LHSV 1 to 4 h-1 on the percentage of sulfur removal was also studied at the temperature of the best removal with constant pressure 35 bar and H2/HC ratio 200cm3/200cm3. The sulfur content results generally revealed that there was a substantial decrease at all operating conditions used, while the maximum sulfur removal was 87.75% in gas oil on Ni-Mo/TiO2-γ-Al2O3 catalyst at temperature 375˚C and LHSV 1h-1.
Propranolol is a nonselective-adrenergic blocker used in the treatment of hypertension, cardiac arrhythmias, and angina pectoris. A significant problem in propranolol therapy is that it undergoes extensive presystemic metabolism after oral administration leading to reduced bioavailability. In this study, two new propranolol derivatives have been designed, synthesized and characterized. These compounds were formed by acylation of propranolol followed by nucleophilic substitution reaction of acylated propranolol, these derivatives were analyzed for IR, CHN, melting points, and evaluated for their lipophilic properties compared with propranolol. The lower partition coefficient of these two derivatives revealed that the prodrug approach may be
... Show MoreThis work includes two steps of synthesis, the first one is the synthesis of indole which was prepared according to literature of the reaction of phenyl hydrazine with acetaldehyde in glacial acetic acid afforded phenyl hydrazone of acetaldehyde , this product was fused with zinc chloride to give the indole.Reaction of cyclohexanone with phenyl hydrazine using the same procedure for the preparing giving 1,2,3,4-Tetrahydrocarbazole.Second step involved synthesis of a series of (17) of mannich bases derivatives of indole and 1,2,3,4-Tetrahydrocarbazle. Mannich reaction involves the condensation of aldehyde usually formaldehyde with different secondary amine and with compound containing an activated hydrogen.The reaction illustrated by the fo
... Show MoreIn the present study, new five polymers of acryloyl chloride have been synthesized by reaction 4-aminoantipyrine with many substituted acid chloride (A-E). Then condensation of polyacryloyl chloride with the product in one step (A-E), in a suitable solvent in the presence amount of (Et3N) to obtain new polyimides(A1-E5). The prepared compounds were characterized by UV. FT-IR, 1H-NMR and 13C-NMR spectroscopy and measuring of other physical properties such as softening point, melting point and solublities.
Permeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show MoreThis investigation reports application of a mesoporous nanomaterial based on dicationic ionic liquid bonded to amorphous silica, namely nano-N,N,N′,N′-tetramethyl-N-(silican-propyl)-N′-sulfo-ethane-1,2-diaminium chloride (nano-[TSPSED][Cl]2), as an extremely effectual and recoverable catalyst for the generation of bis(pyrazolyl)methanes and pyrazolopyranopyrimidines in solvent-free conditions. In both synthetic protocols, the performance of this catalyst was very useful and general and presented attractive features including short reaction times with high yields, reasonable turnover frequency and turnover number values, easy workup, high performance under mild conditions, recoverability and reusability in 5 consecutive runs without lo
... Show MoreA Ligand (ECA) methyl 2-((1-cyano-2-ethoxy-2-oxoethyl)diazenyl)benzoate with metals of (Co2+, Ni2+, Cu2+) were prepared and characterization using H-NMR, atomic absorption spectroscopy, ultra violet (UV) visible, magnetic moments measurements, bioactivity, and Molar conductivity measurements in soluble ethanol. Complexes have been prepared using a general formula which was suggested as [M (ECA)2] Cl2, where M = (Cobalt(II), Nickel(II) and Copper(II), the geometry shape of the complexes is octahedral.
Removing Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.